

Cornwall Solar Project Renewable Energy Approval Modification Report

FINAL REPORT

October 16, 2020 revised February 17, 2021

Prepared for:

Liberty Power 354 Davis Road, Suite 100 Oakville ON L6J 2X1

Prepared by:

Stantec Consulting Ltd. 1-70 Southgate Drive Guelph ON N1G 4P5

CORNWALL SOLAR PROJECT RENEWABLE ENERGY APPROVAL MODIFICATION REPORT

This document entitled Cornwall Solar Project Renewable Energy Approval Modification Report was prepared by Stantec Consulting Ltd. ("Stantec") for the account of Liberty Power (the "Client"). Any reliance on this document by any third party is strictly prohibited. The material in it reflects Stantec's professional judgment in light of the scope, schedule and other limitations stated in the document and in the contract between Stantec and the Client. The opinions in the document are based on conditions and information existing at the time the document was published and do not take into account any subsequent changes. In preparing the document, Stantec did not verify information supplied to it by others. Any use which a third party makes of this document is the responsibility of such third party. Such third party agrees that Stantec shall not be responsible for costs or damages of any kind, if any, suffered by it or any other third party as a result of decisions made or actions taken based on this document.

Prepared by _ (signature)

Jacqueline Corr, HBASc, MES Environmental Assessment Planner

Reviewed by

(signature)

Leslie Greener, B.Sc., EP Environmental Consultant

Approved by (signature)

Rob Rowland, M.Sc., B.Sc., P.Geo. Senior Project Manage

Table of Contents

1.0	INTRODUCTION	. 1
2.0	SUMMARY AND RATIONALE FOR MINOR MODIFICATION	1
3.0	PROJECT DESIGN CHANGE (MINOR) – REPLACEMENT OF GROUND MOUNTED TRANSFORMERS	. 1
4.0	RESULTS OF EFFECTS ASSESSMENT FOR THE PROJECT MODIFICATION	2
5.0	POTENTIAL IMPACTS TO REA TECHNICAL ASSESSMENT AND STUDIES	2
6.0	SUMMARY OF REVISIONS TO THE REA TECHNICAL ASSESSMENTS	4
7.0	CONSULTAION AND NOTIFICATION	4
8.0	CLOSURE	4
LIST C	OF TABLES	
Table	1: Potential Negative Impacts on Natural Environmental Components	2
Table 2	2: Potential Negative Impacts on Socio-Economic Environmental Components	3

LIST OF APPENDICES

Ap	pendix	А	Site	La	/out

Appendix B Noise Assessment Study Report

Appendix C Notice of a Proposed Change to an Approved Renewable Energy Project

1.0 INTRODUCTION

Cornwall Solar Inc., a subsidiary of Liberty Power received a Renewable Energy Approval (REA #3195-92JKTY dated January 15, 2013) and an Amendment to the Renewable Energy Approval (EBR Registry #012-3158 dated December 17, 2014), from the Ministry of the Environment, Conservation and Parks (MECP) for the Cornwall Solar Project (the Project). A 10-megawatt (MW) solar photovoltaic (PV) facility was constructed on approximately 24.7 hectares (ha) of land on Park Lots 5. 6 and 7, Concession 5, Indian Lands Charlottenburgh, designated as Park 1 and 2 on Reference Plan 14R5859, within the Township of South Glengarry (lower tier municipality), in the United Counties of Stormont, Dundas and Glengarry (upper tier municipality). The facility has been operational since March 27, 2014.

2.0 SUMMARY AND RATIONALE FOR MINOR MODIFICATION

The proposed Project change entails replacing the existing ten intermediate transformers with ten new intermediate transformers in the same locations to address an existing maintenance issue. The proposed replacement transformers will be installed on concrete slab-on-grade, which will not be replaced. The facility's total maximum name plate capacity of 10 megawatt shall remain unchanged.

3.0 PROJECT DESIGN CHANGE (MINOR) – REPLACEMENT OF GROUND MOUNTED TRANSFORMERS

The proposed Project change entails replacing the existing ten intermediate transformers with ten new intermediate transformers in the same location to address an existing maintenance issue. The proposed replacement transformers will be installed on concrete slab-on-grade, which will not be replaced. The facility's total maximum name plate capacity of 10 megawatt shall remain unchanged.

The proposed layout and placement of transformers is provided in Appendix A.

Liberty Power has prepared an application to amend the REA to account for the replacement of the intermediate transformers which is designated as a Project Design Change.

4.0 RESULTS OF EFFECTS ASSESSMENT FOR THE PROJECT MODIFICATION

O. Reg. 359/09 requires that any adverse environmental effects that may result from construction, installation, operation and maintenance activities be described. The term "environment" in O. Reg. 359/09 has the same meaning as in the *Environmental Protection Act*, and includes the natural, physical, cultural, and socio-economic environment.

A screening to identify any new environmental effects that would require additional mitigation or monitoring measures beyond those outlined in the REA documents because of the proposed modifications to the Project has been completed.

The installation of the new intermediate transformers will be completed in the same manner as the original installation, Since this installation method has been previous reviewed as part of the REA application and the work will be completed within the previously assessed areas, no new environmental impacts are expected.

5.0 POTENTIAL IMPACTS TO REA TECHNICAL ASSESSMENT AND STUDIES

Liberty Power, on behalf of Cornwall Solar Inc., has previously completed all the required REA technical assessments (including the Natural Heritage Assessment, Noise Assessment as well as Stage 1 and Stage 2 Archeological Assessments) for the Project which includes the area where the proposed installations will be, and as such, the installation of the new intermediate transformers has been deemed to have no adverse effects on the result of the REA assessment.

Table 1 and 2 below outline the potential negative impacts on environmental components due to the minor Project change and any new mitigation and/or monitoring measures proposed (where applicable). Note: there is no potential for negative environmental impacts because of the minor Project change.

Environmental Component	Potential Negative Environmental Impacts	Mitigation Measures	Monitoring Requirements
Air Quality	No additional negative impact.	No additional mitigation required.	No new monitoring required.
Soil Quality	No additional negative impact.	No additional mitigation required.	No new monitoring required.
Soil Quantity	No additional negative impact.	No additional mitigation required.	No new monitoring required.
Groundwater	No additional negative impact.	No additional mitigation required.	No new monitoring required.

Table 1: Potential Negative Impacts on Natural Environmental Components

Environmental Component	Potential Negative Environmental Impacts	Mitigation Measures	Monitoring Requirements
Surface Water Quality	Quality No additional negative No additional negative required		No new monitoring required.
Surface Water Quantity No additional negative impact. No additional mitigation required. No new monitor		No new monitoring required.	
Aquatic Habitat and Biota	No additional negative impact.	No additional mitigation required.	No new monitoring required.
Woodlands	No additional negative impact.	No additional mitigation required.	No new monitoring required.
Wetlands	No additional negative impact.	No additional mitigation required.	No new monitoring required.
Wildlife Habitat	No additional negative impact.	No additional mitigation required.	No new monitoring required.
Wildlife	No additional negative impact.	No additional mitigation required.	No new monitoring required.

nts
ľ

Table 2: Potential Negative Impacts on Socio-Economic Environmental Components

Environmental Component	Potential Negative Environmental Impacts	Mitigation Measures	Monitoring Requirements
Noise	No additional negative impact.	No additional mitigation required.	No new monitoring required.
Public and Facility Safety	No additional negative impact.	No additional mitigation required.	No new monitoring required.
Change in Visual Landscape	No additional negative impact.	No additional mitigation required.	No new monitoring required.
Property Values	No additional negative impact.	No additional mitigation required.	No new monitoring required.
Availability of Resources	No additional negative impact.	No additional mitigation required.	No new monitoring required.
Recreational Land Use	No additional negative impact.	No additional mitigation required.	No new monitoring required.
Infrastructure	No additional negative impact.	No additional mitigation required.	No new monitoring required.
Traffic	No additional negative impact.	No additional mitigation required.	No new monitoring required.
Archaeological and Heritage Resources	No additional negative impact.	No additional mitigation required.	No new monitoring required.

6.0 SUMMARY OF REVISIONS TO THE REA TECHNICAL ASSESSMENTS

Table 3 identifies the amendments to the REA technical assessments submitted with the original REA application and reviewed by the MECP that are required to address the proposed Project change. Any changes to the reports have been addressed by issuance of this Modification Report and its appendices.

Table 3: Summary of Revisions to the REA Supporting Documents

Report	Original Text	Revised Text
Noise Assessment Report	Described existing conditions, potential impacts and mitigation measures.	Full replacement of the previous Noise Report.

A copy of the Cornwall Solar Project Noise Assessment Study Report, dated January 15, 2021 is provided in **Appendix B**.

7.0 CONSULTATION AND NOTIFICATION

Consultation regarding the proposed modification was undertaken with the MECP via email on July 28th, 2020 and September 18th, 2020.

A copy of this Modification Report has been provided to the Ministry of Natural Resources and Forestry (MNRF) and the Ministry of Heritage, Sport, Tourism and Culture Industries (MHSTCI) for their information. As there are no unassessed areas, and no new impacts, we do not anticipate the need for new confirmation letters from these ministries.

A copy of this Modification Report will be placed on the Project website - www.cornwallsolarproject.com

The Notice of Proposed Change to an Approved Renewable Energy Project will be mailed out to all Project stakeholders notifying them of the proposed minor Project Design Change and directing them to review the Modification Report available on the Project website. In addition, the notice shall be distributed to the public in accordance with Section 32.3(1) of O. Reg. 359/09. A copy of the notices is presented in **Appendix C**.

8.0 CLOSURE

The proposed modifications have been adequately assessed in accordance with O. Reg. 359/09 and the MECP's Technical Guide. It has been determined that the modifications will not result in new negative environmental effects or require additional associated mitigation measures beyond those identified as part of the original REA Application submitted for the Project.

CORNWALL SOLAR PROJECT RENEWABLE ENERGY APPROVAL MODIFICATION REPORT

APPENDIX A Site Layout

SYSTEM SIZE				
	# OF MODULES	WATTAGE	DC MW	NUMBER OF TABLES
	4312	290	1.250	98
	4312	290	1.250	98
	4268	290	1.238	97
	4268	295	1.259	97
	4268	295	1.259	97
	4268	295	1.259	97
	4268	295	1.259	97
	4312	290	1.250	98
	4268	295	1.259	97
	4268	295	1.259	97
	42812		12.544	973.00

Stantec Consulting Ltd. 300 Hagey Boulevard Waterloo ON Canada 519.579.4410

www.stantec.com

Copyright Reserved

The Contractor shall verify and be responsible for all dimensions. DO NOT scale the drawing - any errors or omissions shall be reported to Stantec without delay. The Copyrights to all designs and drawings are the property of Stantec. Reproduction or use for any purpose other than that authorized by Stantec is forbidden.

Notes A. GENERAL:

- <u>BENCHMARK:</u> ELEVATIONS ARE GEODETIC AND ARE DERIVED FROM MTO VERTICAL CONTROL MONUMENT 819708525 HAVING AN ELEVATION OF 55.752
 TOPOGRAPHICAL SURVEY AND LEGAL PLAN PROVIDED BY STANTEC RECEIVED MAY 2012. GEOTECHNICAL INVESTIGATION PROVIDED BY STANTEC. DATED JUNE 1, 2012.
- THIS DRAWING TO BE READ IN CONJUNCTION WITH THE SITE LAYOUT PLAN (C-010), THE
- CLEARING, GRUBBING AND FENCING PLAN (C-050), THE SITE ACCESS PROFILES (C-201 TO C-203), AND THE SITE GRADING & EROSION CONTROL PLAN (C-401 TO C-404), PREPARED BY STANTEC CONSULTING LTD. THE CONTRACTOR MUST CHECK AND VERIFY DIMENSIONS; OBTAIN ALL UTILITY LOCATES
- AND OBTAIN ALL REQUIRED PERMITS/LICENSES AND VERIFY ELEVATIONS OF EXISTING SERVICES BEFORE PROCEEDING WITH ANY WORK. ALL CONSTRUCTION WORK SHALL BE CARRIED OUT IN ACCORDANCE WITH THE REQUIREMENTS OF THE OCCUPATIONAL HEALTH AND SAFETY ACT AND REGULATIONS FOR CONSTRUCTION PROJECTS
- (LATEST EDITION).
- (LATEST EDITION).
 6. IF, FOR UNFORESEEN REASONS, THE OWNER AND/OR HIS/HER REPRESENTATIVE MUST ENCROACH ONTO PRIVATE LANDS TO UNDERTAKE ANY WORKS, HE/SHE MUST OBTAIN WRITTEN PERMISSION FROM THE ADJACENT PROPERTY OWNERS PRIOR TO ENTERING UPON THE PRIVATE PROPERTY TO PERFORM ANY WORKS. COPIES OF THESE LETTERS OF CONSENT MUST BE SUBMITTED TO STANTEC, PRIOR TO ANY WORK BEING PERFORMED. FAILURE TO COMPLY WITH THE ABOVE IS AT THE PROPERTY OWNERS OWN RISK.
- THE CONTRACTOR IS RESPONSIBLE FOR RESTORATION OF ALL DAMAGED AND/OR DISTURBED PROPERTY WITHIN THE MUNICIPAL RIGHT-OF-WAY TO THE TOWNSHIP OF SOUTH GLENGARRY
- STANDARDS. THE CONTRACTOR IS TO BE RESPONSIBLE FOR ALL DRAINAGE AND MEASURES TO
- THE CONTRACTOR IS TO BE RESPONSIBLE FOR ALL DRAINAGE AND MEASURES TO CONTROL WATER. THE SITE IS TO BE FINE GRADED/LEVELED LEAVING THE SITE IN A NEAT APPEARANCE SUCH THAT POSITIVE DRAINAGE IS ACHIEVED EVERYWHERE PRIOR TO THE INSTALLATION OF SOLAR PANELS.
 CONSTRUCTION TURNING RADIUS LIMITS IDENTIFY AREAS WHERE ADDITIONAL ROAD WIDTH IS REQUIRED TO ALLOW FOR ADEQUATE CLEARANCE FOR CONSTRUCTION VEHICLES.
 CULVERTS ARE TO BE INSTALLED AS PER OPSD 802.010.
 ALL AREAS WITHIN THE PROPOSED WORKS ARE TO BE RE-VEGETATED USING NATIVE TOPSOIL AND SEED.

- ALL AREAS WITHIN THE PROPOSED WORKS ONE TO BE THE RECEIVED EXAMPLE FOR AND SEED.
 CLEARING AND GRUBBING AND REMOVALS TO BE COMPLETED IN ACCORDANCE WITH OPSS 201. TEMPORARY EROSION CONTROL TO BE COMPLETED IN ACCORDANCE WITH OPSS 577.
 GRADING TO BE COMPLETED IN ACCORDANCE WITH OPSS 206. GRANULAR MATERIAL TO BE USED IN ACCORDANCE WITH OPSS 1010.
 CULVERT TO BE CONSTRUCTED IN ACCORDANCE WITH OPSS 421. HEIGHT OF FILL TABLE FOR CSP CULVERTS TO COMPLY WITH OPSD 805.010.

Legend

	PROPERTY LINE
····	SETBACK TO PV ARRAY
	BLOCK LIMITS (TYP.)
	ACCESS ROAD
	RACK OF 4 X 11 PV MODULES
****	FENCE
	MV STATION
	CULVERT
	PROPOSED TREE SCREENING

Re	vision		Ву	Appd.	YY.MM.DD
F.	O&M BUILDING		МНН	MAN	14.09.23
E.	UPDATED TABLE LAYOUT IN BLOCK 9		MHH	MAN	13.08.15
D.	D. UPDATED TABLE LAYOUT IN BLOCK 9		MHH	MAN	13.05.01
C.	C. ISSUED FOR CONSTRUCTION		MHH	MAN	13.03.08
В.	B. FINAL EQUIPMENT LOCATIONS			MPV	13.01.07
lss	Issued			Appd.	YY.MM.DD
File	File Name: 161011117_CS-SP.dwg MHH			MHH	12.09.27
_		Dwn.	Chkd.	Dsgn.	YY.MM.DD
-					

Permit-Seal

Client/Project LIBERTY POWER

CORNWALL SOLAR

Cornwall, ON Canada

Title SITE PLAN LAYOUT NOON SHADING AND 26° INSTALLATION TILT

Project No. 161011117	Scale 0 12.5 1:1250	37.5	62.
Drawing No.	Sheet	Revision	
		_	

CORNWALL SOLAR PROJECT RENEWABLE ENERGY APPROVAL MODIFICATION REPORT

APPENDIX B Noise Assessment Study Report

Cornwall Solar Project

Noise Assessment Study Report

January 15, 2021

Cornwall Solar Inc. Oakville, ON

Noise Assessment Study Report

Cornwall Solar Project

H336742-2000-07-124-0009 Rev. 7 January 15, 2021

Revision History

Revision Number	Date	Change
00	2012-11-16	
01	2012-11-23	 Changed Cornwall Solar inverters design to enclosed inverters. Updated SPL calculations accordingly.
02	2013-03-06	 Added one ventilation exhaust fan as a noise source to each inverter cluster. Updated inverter make and model from Sunny Central 500HE-US to Xantrex GT500 MVX – updates made to its SWLs accordingly.
03	2013-06-10	 Changed Cornwall Solar facility substation transformer model to a different design. Removed substation transformer sound barrier as it is no longer needed.
04	2020-02-25	 Updated Cornwall Solar 1 MVA pad mounted transformers Lw calculations using newly provided transformer dimensions from WEG.
05	2020-12-18	- Updated as per MECP 2020-12-02 Comments
06	2021-01-11	 Revised South Glengarry and Glendale source coordinates to match respective REAs
07	2021-01-15	 Revised South Glengarry and Glendale source sound power levels to match respective REAs

Executive Summary

This report presents the results of the Noise Assessment Study required for Solar Facilities under Ontario Regulation 359/09 and 521/10, as part of the Renewable Energy Approval (REA) Process. Cornwall Solar Inc. is proposing to develop a 10-megawatt (MW) solar photovoltaic (PV) project titled Cornwall Solar Project (the "Project"). The Project will be located on an approximately 25 hectares (ha) of land within the Township of South Glengarry, United Counties of Stormont, Dundas and Glengarry, Ontario.

This Noise Assessment Study Report has been prepared based on the document entitled "Basic Comprehensive Certificates of Approval (Air) – User Guide" by the Ontario Ministry of the Environment, Conservation and Parks (MECP, 2004). The sound pressure levels at the points of reception (POR) have been estimated using ISO 9613-2, implemented in the CadnaA computer code. The performance limits used for verification of compliance correspond to the values for rural areas of 40 dBA. The results presented in this report are based on the best available information at this time. It is the intention that following commissioning of the facility, community noise emissions will be validated with measurements to confirm the conclusions of this noise impact assessment study.

The results obtained in this study show that the sound pressure levels at the Noise Receptors resulting from the project operation will not exceed MECP requirements of 40 dB for rural areas.

Project Report

Cornwall Solar Inc. Cornwall Solar Project

Noise Assessment Study Report

Table of Contents

Report Disclaimer Executive Summary

1.	Introd	luction	1
	1.1	Project Description	1
	1.2	Renewable Energy Approval Legislative Requirements	1
2.	Facilit	y Description	2
	2.1	Project Location	2
	2.2	Acoustical Environment	2
	2.3	Life of Project	2
	2.4	Operating Hours	2
	2.5	Approach to the Study	2
3.	Noise	Sources	4
	3.1	Substation Transformer	1
	3.2	Inverter Clusters	1
	3.3	Noise Summary Table	5
	3.4	Adjacent Solar Projects	5
4.	Noise	Receptors and Points of Reception	7
5.	Mitig	ation Measures1	D
6.	Impac	t Assessment	D
	6.1	Compliance With Performance Limits1	L
7.	Concl	usions and Recommendations1	5
8.	Refer	ences 1	8
Арр	endix	A Land Use Zoning Designation Plan and Area Location Plan	

Appendix A	Land Use Zoning Designation Plan and Area Location Plan
Appendix B	Noise Sources
Appendix C	Noise Maps from CadnaA

Cornwall Solar Inc. - Cornwall Solar Project Noise Assessment Study Report - H336742

List of Tables

Table 2.1	General Project Description	.2
Table 3.1	Noise Source Summary for Cornwall Solar Project	.5
Table 4.1	1.5-m Case – Point of Reception Noise Impact from Individual Cornwall Solar Noise Sources	.7
Table 4.2	4.5-m Case – Point of Reception Noise Impact from Individual Cornwall Solar Noise Sources	.9
Table 6.1	Performance Limits (One-Hour L_{eq}) by Time of Day for Class 3 Areas.	10
Table 6.2	Calculated Sound Pressure Levels at POR within 1 km of Cornwall Solar Project	12

List of Figures

Figure 2-1: CadnaA	Configurations	;
0	5	

.

1. Introduction

1.1 Project Description

Cornwall Solar Inc. is proposing to develop a 10-megawatt (10 MW) solar photovoltaic (PV) project titled Cornwall Solar Project (the "Project").

The proposed Project is a renewable energy generation facility which will use solar photovoltaic technology to generate electricity. Electricity generated by solar photovoltaic panels will be converted from Direct Current (DC) to Alternating Current (AC) by inverter clusters which will also step up the voltage to 34.5 kV. A main transformer, located in the substation, will step up the voltage from the clusters to 44 kV prior to being transmitted to the existing local distribution line.

The construction of the Project will begin once the Renewable Energy Approval (REA) has been obtained and the Notice to Proceed has been obtained from the OPA. The anticipated operational lifespan of the Project is 30 years.

1.2 Renewable Energy Approval Legislative Requirements

Ontario Regulation 359/09 and 521/10, made under the Environmental Protection Act identify the Renewable Energy Approval (REA) requirements for green energy projects in Ontario. As per Section 4 of these regulations, ground mounted solar facilities with a name plate capacity greater than 12 kilowatts (kW) are classified as a Class 3 solar facility and, therefore, require an REA.

Section 13 of the Ontario Regulation 359/09 requires proponents of Class 3 solar facilities to complete a Noise Assessment Study Report in accordance with Appendix A of the publication; "Basic Comprehensive Certificates of Approval (Air) – User Guide, 2004" by the Ministry of the Environment, Conservation and Parks (MECP, 2004).

The Noise Assessment Study Report is to include a general description of the facility, sources, Noise Receptors, assessment of compliance, as well as all the supporting information relevant to the Project.

2. Facility Description

The Project will use photovoltaic (PV) panels installed on fixed racking structures mounted on the ground. The PV panels generate DC electricity which will be converted to AC electricity by inverters. The Project layout is based on ten inverter clusters each one containing two inverters and one 208-V/34.5-kV/1MVA medium transformer, as well as a 34.5-kV/44-kV/10-MVA substation transformer. The 34.5-kV power, collected from the inverter clusters, will be stepped up to 44 kV by the substation transformer prior to being transmitted to the existing local distribution line.

Since the panels will be ground-mounted and the total nameplate capacity is over 12 kW, the Project is considered to be a Class 3 Solar Facility according to the classification presented in Ontario Regulation 521/10.

Table 2.1	General Pro	ject Description
		Jeee - eee

Project Description	Ground-mounted Solar PV, Class 3
System Nameplate Capacity	10 MW AC
Local Distribution Company	Hydro One Networks Inc.

2.1 Project Location

The Project Location¹ will be located on approximately 25 ha of land, located about 8 km north of Cornwall. Figure A.1 in Appendix A shows the zoning designation plan while Figure A.3 presents the Project Area Location Plan. Figure A.2 displays adjacent solar projects.

2.2 Acoustical Environment

The Project will be surrounded by farmland with some forested areas to the northwest. The background noise levels are expected to be typical of rural areas, classified as a Class 3 based on Publication NPC-232 by the MECP. Some traffic noise is expected from Regional Road 19, passing south of the Project, mainly during day hours. Cornwall town is located about 8 km south of the proposed location.

2.3 Life of Project

The expected life of the Project is 30 years. The manufacturer's warranty on the PV modules is 25 years and the expected life of solar power plants of this type is typically 35 to 40 years. At that time (or earlier if the 20-yr power purchase agreement is not extended), the Project will be decommissioned or refurbished depending on market conditions and/or technological changes.

2.4 Operating Hours

Solar PV facilities produce electricity during the day hours, when the sun rays are collected by the panels. After sunset the facility will not receive solar radiation; therefore, no electricity will be produced. Under these conditions the inverters will not produce any noise and the transformers will be energized, but not in operation (no fans in operation).

2.5 Approach to the Study

The sound pressure levels at the POR were predicted using procedures from ISO 9613-2, which is a widely used and generally accepted standard for the evaluation of noise impact in environmental Assessments.

¹ "Project Location" in the context of this study is an area occupied by the Project infrastructure.

The sound power level for the inverters was provided by the manufacturer while the sound power level for the transformers was estimated using NEMA TR-1 standards.

The software package CadnaA, which implements ISO-9613-2, was used to predict the noise levels at the Points of Reception. This numerical modeling software is able to simulate sound sources as well as sound mitigation measures taking into account atmospheric and ground attenuation. Some of the CadnaA configurations used in the modeling are shown in Figure 2-1.

Elevation contours were not included in the model. This conservative approach was applied in order to avoid including any barrier effects of ground surface obstacles. For modeling purposes, the vegetation that blocks some of the POR from the sources has not been incorporated.

onfiguration of Calculation				? 🛛
Country General Partition Reflection Lateral Diffraction: some Obj Excl. Ground Att. over Barrier V No sub. of neg. Ground Att. Obst. within Area Src do not shi Barrier Coefficients:	n Ref. Time Industry if Distance sr Dz with lim V No neg eld Src. in B C1: 3.0	Eval.Param. Road naller (m): 1000 it (20/25) path difference Building/Cyl. do no C2: 20.0	ot shield	Ground Abs. Railroad
Temperature (°C): 10 rel. Humidity (%): 70 Ground Attenuation: spectral, all sources	Meteorology:	none		
		OK	Cancel	Help

Figure 2-1: CadnaA Configurations

3. Noise Sources

The main sources of noise from the Project will be ten inverter clusters, each one containing two inverters, one ventilation exhaust fan, and one medium-voltage transformer, as well as a substation containing the main step-up transformer. The Project layout is provided in Figure A.3. The coordinates of each modelled noise source are presented in Table B.1 and of Appendix B. These coordinates are within 5m of coordinates listed in the REA.

All noise sources were modelled as non-directional point sources.

For the purpose of this study it is assumed that all equipment will be operating 24 hours at full capacity.

3.1 Substation Transformer

A 10-MVA step-up transformer that will step up the 34.5-kV power to 44 kV, required by the local distribution company, will be located in the substation. The transformer, manufactured by ABB, will be of ONAF (oil natural air forced) type with guaranteed characteristic sound pressure of 63.0 dBA, as shown with additional transformer specifications in Appendix B. The transformer sound pressure level dissipation surface area, needed for sound power calculation, was estimated based on dimensions taken from the transformer drawing provided by ABB and included in Appendix B. The provided characteristic sound pressure was converted into frequency spectra using empirical correlations for transformer noise (Crocker) and 41.9-m² surface area. This calculation is available in Figure B.2 of Appendix B. The transformer configurations are expected to be similar to those shown in Appendix B. Noise source height representing the transformer was assumed at 3.5 m above ground level (includes 0.5-m high concrete foundation).

Power transformers are considered by the MECP to be tonal noise sources. A 5-dB penalty was added to the sound power spectrum, as recommended by Publication NPC-104 "Sound Level Adjustments", for tonality. Table B.3 in Appendix B shows the frequency spectrum used to model the substation transformer.

3.2 Inverter Clusters

Cornwall Solar Inc. is planning to use inverters manufactured by Schneider Electric. Ten inverter clusters will be installed as part of the Project. Each cluster comprises of two GT500 MVX inverters inside an enclosure, one ventilation exhaust fan, and one 208-V/34.5-kV/1-MVA medium voltage transformer supplied by WEG. Both the ventilation fan and 208-V/34.5-kV/1-MVA transformer will be located outside the enclosure. Schematic cluster arrangement can be found in Appendix B.

Nominal output capacity of GT500 MVX inverter is 500 kW. Cornwall Solar Inc. provided one third octave band sound power for the GT500 MVX inverter. Appendix B includes technical description of the inverter, sound power measurement report, and one third octave band to full octave band conversion calculation (Figure B.1). The two enclosed inverters were modeled as a single noise source with recommended minimum enclosure transmission loss. A 5-dBA penalty was added to the frequency spectrum, as stipulated in Publication NPC-104, "Sound Level Adjustments," to allow for tonality. The frequency spectrum used to model combined noise emission from two inverters is shown in Table B.3 of Appendix B. Noise source height representing the inverter installation was assumed at 2.3 m above ground level.

Cornwall Solar Inc. - Cornwall Solar Project Noise Assessment Study Report - H336742

To step up the 208 V from the inverters to 34.5-kV, 1-MVA medium voltage transformers will be located in close proximity to the inverters outside the enclosure. The transformer is an ONAN (oil natural air natural) type, a conservative estimate of sound power level was based on the data from NEMA TRI – 1993 (2000) and transformer dimensions as provided by WEG – shown in Appendix B. This standard provides maximum characteristic sound pressure values for transformers and manufacturers routinely meet this specification. The NEMA level was then converted into frequency spectra using empirical correlations for transformer noise (Crocker). This calculation is available in Figure B.3 of Appendix B. Noise source height representing the transformer was assumed at 2.0 m above ground level. Power transformers are considered by the MECP to be tonal noise sources. A 5-dB penalty was added to the sound power spectrum, as recommended by Publication NPC-104, "Sound Level Adjustments" for tonality. Table B.3 in Appendix B shows the frequency spectrum used to model the cluster medium-voltage transformer.

To provide an adequate ventilation inside the enclosure an exhaust fan will be mounted on one of the walls. CWB-101-4 exhaust fan manufactured by Greenheck was selected for the application. Sound power level of the fan was provided by Greenheck and can be found in Appendix B along with other technical data on the fan. Although fans in general are not considered tonal noise sources 5-dB was conservatively added to the provided sound power in the study. Noise source height representing the fan was assumed at 2.0 m above ground level.

Although for the modeling purposes it was assumed that the facility will operate 24 hours at full capacity, in reality at night the facility will be idle. Under these conditions the inverters do not produce noise. The transformers (at the substation and clusters) are energized and make some magnetostrictive noise at a reduced level, but no cooling fans are in operation.

3.3 Noise Summary Table

A summary of the sound sources described above, including sound power level, characteristics and proposed noise control measures, is presented in Table 3.1.

Source ID	Description	Total Sound Power Level (dBA)	Source Location	Sound Characteristics	Noise Control Measures
CW_Fan01	CWB-101-4 exhaust fan at CW_Cluster01	78.2	0	S	U
CW_Fan02	CWB-101-4 exhaust fan at CW_Cluster02	78.2	0	S	U
CW_Fan03	CWB-101-4 exhaust fan at CW_Cluster03	78.2	0	S	U
CW_Fan04	CWB-101-4 exhaust fan at CW_Cluster04	78.2	0	S	U
CW_Fan05	CWB-101-4 exhaust fan at CW_Cluster05	78.2	0	S	U
CW_Fan06	CWB-101-4 exhaust fan at CW_Cluster06	78.2	0	S	U
CW_Fan07	CWB-101-4 exhaust fan at CW_Cluster07	78.2	0	S	U
CW_Fan08	CWB-101-4 exhaust fan at CW_Cluster08	78.2	0	S	U
CW_Fan09	CWB-101-4 exhaust fan at CW_Cluster09	78.2	0	S	U
CW_Fan10	CWB-101-4 exhaust fan at CW_Cluster10	78.2	0	S	U
CW_Inv01	Two Schneider Electric GT500 MVX inverters at CW_Cluster01	83.8	0	S-T	E
CW_Inv02	Two Schneider Electric GT500 MVX inverters at CW_Cluster02	83.8	0	S-T	E
CW_Inv03	Two Schneider Electric GT500 MVX inverters at CW_Cluster03	83.8	0	S-T	E
CW_Inv04	Two Schneider Electric GT500 MVX inverters at CW_Cluster04	83.8	0	S-T	E
CW_Inv05	Two Schneider Electric GT500 MVX inverters at CW_Cluster05	83.8	0	S-T	E

 Table 3.1
 Noise Source Summary for Cornwall Solar Project

		NOISC ASS	essment Study	/ NCpOIt 11550742	
		Total Sound			Noise
		Power	Source	Sound	Control
Source ID	Description	Level (dBA)	Location	Characteristics	Measures
CW_Inv06	Two Schneider Electric GT500 MVX inverters at CW_Cluster06	83.8	0	S-T	E
CW_Inv07	Two Schneider Electric GT500 MVX inverters at CW_Cluster07	83.8	0	S-T	E
CW_Inv08	Two Schneider Electric GT500 MVX inverters at CW_Cluster08	83.8	0	S-T	E
CW_Inv09	Two Schneider Electric GT500 MVX inverters at CW_Cluster09	83.8	0	S-T	E
CW_Inv10	Two Schneider Electric GT500 MVX inverters at CW_Cluster10	83.8	0	S-T	E
CW_Sub	34.5-kV/44-kV/10-MVA substation transformer	86.6	0	S-T	U
CW_Trans01	208-V/34.5-kV/1-MVA WEG transformer at CW_Cluster01	78.3	0	S-T	U
CW_Trans02	208-V/34.5-kV/1-MVA WEG transformer at CW_Cluster02	78.3	0	S-T	U
CW_Trans03	208-V/34.5-kV/1-MVA WEG transformer at CW_Cluster03	78.3	0	S-T	U
CW_Trans04	208-V/34.5-kV/1-MVA WEG transformer at CW_Cluster04	78.3	0	S-T	U
CW_Trans05	208-V/34.5-kV/1-MVA WEG transformer at CW_Cluster05	78.3	0	S-T	U
CW_Trans06	208-V/34.5-kV/1-MVA WEG transformer at CW_Cluster06	78.3	0	S-T	U
CW_Trans07	208-V/34.5-kV/1-MVA WEG transformer at CW_Cluster07	78.3	0	S-T	U
CW_Trans08	208-V/34.5-kV/1-MVA WEG transformer at CW_Cluster08	78.3	0	S-T	U
CW_Trans09	208-V/34.5-kV/1-MVA WEG transformer at CW_Cluster09	78.3	0	S-T	U
CW_Trans10	208-V/34.5-kV/1-MVA WEG transformer at CW_Cluster10	78.3	0	S-T	U

Notes:

1. A 5-dBA penalty and enclosure (E) attenuation are included in this table.

2. Location: Inside building (I), Outside building (O).

3. Sound Characteristics: Steady (S), Tonal (T), Impulsive (I), Quasi-Steady Impulsive (QSI).

4. Noise Control: Silencer (S), Acoustic lining (A), Barrier (B), Lagging (L), Enclosure (E), Other (O), Uncontrolled (U).

3.4 Adjacent Solar Projects

To identify the adjacent solar projects Hatch's internal database of solar projects and MECP records available in http://www.ene.gov.on.ca/environment/en/subject/renewable_energy/projects/index.htm were searched (June 3, 2013).

There are two solar projects (Figure A.2) within 1 km of the Cornwall Solar Project Noise Receptors: Glendale Solar Project owned by Northland Power Inc; and South Glengarry St. Lawrence-1 Solar Farm owned by Penn Energy Renewable Limited. Noise sources from these two projects were taken into account in the study. Coordinates and sound properties of these noise sources were taken from the respective noise assessment study reports and are listed in Table B.3 of Appendix B.

4. Noise Receptors and Points of Reception

The Noise Receptors used in this study were identified from the OBM and Google Earth Pro aerial imagery (June 2007) within 1-km distance from the Project Site² boundary, and also from information provided by Cornwall Solar Inc. based on visual observations of the Project Site surroundings.

The Noise Receptors corresponding to the vacant lots were added based on parcel information provided by First Base Solutions (Teranet Data) and located according to the requirements outlined in Ontario Regulation 359/09, and its amendment (Ontario Regulation 521/10).

The total number of Noise Receptors within a 1-km distance from the Project Site of Cornwall Solar Project boundary is 86, including the vacant lots. Points of reception were placed at the Noise Receptors according to the following rules:

- 1) All existing Noise Receptors were modeled by POR located at the point on the façade where sound pressure level is a maximum at 4.5 m above ground height.
- 2) All existing Noise Receptors were also modeled by POR located at the point on the 30-m envelope placed around the façade where sound pressure level is a maximum at 1.5 m above ground height.
- 3) All vacant lot Noise Receptors were modeled by POR placed in the center of the assumed future building structures located at 4.5 m above ground height.
- 4) All vacant lot Noise Receptors were also modeled by POR located at the point on the 30-m circle placed around the center of the assumed future building structure where sound pressure level is a maximum at 1.5 m above ground height.

Ten of these POR, identified in Table 4.1 and Table 4.2, were chosen as representative for evaluating the noise contribution from each individual source. These ten POR were chosen in order to represent sound pressure level contributions on different areas around the Project Location. The complete set of results for all POR used to model 86 Noise Receptors is provided in Table 6.2. Coordinates of the Noise Receptor footprint centers are provided in Table C.1.

	Noise Receptor ID									
	RO	07	R0	34	R037		R038		R039	
Source ID	Dist [m]	Sound Pressure Contribution [dBA]	Dist [m]	Sound Pressure Contribution [dBA]	Dist [m]	Sound Pressure Contribution [dBA]	Dist [m]	Sound Pressure Contribution [dBA]	Dist [m]	Sound Pressure Contribution [dBA]
CW_Fan01	693	5	219	17	126	23	215	17	198	18
CW_Fan02	742	4	260	16	250	16	332	13	292	14
CW_Fan03	793	3	333	13	357	12	434	10	384	12
CW_Fan04	876	2	450	10	498	9	572	7	515	8
CW_Fan05	966	1	567	7	627	6	700	5	639	6
CW_Fan06	1078	0	517	8	630	6	733	4	690	5

Table 4.1 1.5-m Case – Point of Reception Noise Impact from Individual Cornwall Solar Noise Sources

² "Project Site" in the context of this study is the complete area designated for the Project, but not necessary occupied with the project infrastructure. Project Location is always contained within Project Site.

				Noise Receptor ID							
	R007		RO	34	RO	37	RO	38	RO	39	
Source ID	Dist [m]	Sound Pressure Contribution [dBA]									
CW_Fan07	1001	1	392	11	507	9	617	6	581	7	
CW_Fan08	933	2	257	16	378	12	499	9	476	9	
CW_Fan09	879	2	140	22	262	15	397	11	391	11	
CW_Fan10	849	3	67	29	183	19	332	13	345	13	
CW_Inv01	695	9	216	21	125	26	216	21	200	22	
CW_Inv02	744	9	258	19	250	20	333	17	294	18	
CW_Inv03	795	8	331	17	356	16	435	14	385	15	
CW_Inv04	878	7	449	14	497	13	572	11	516	12	
CW_Inv05	968	6	566	11	627	10	700	9	640	10	
CW_Inv06	1080	5	517	12	631	10	734	9	691	9	
CW_Inv07	1003	5	391	15	507	13	618	11	582	11	
CW_Inv08	936	6	257	19	379	16	501	13	478	13	
CW_Inv09	881	7	139	25	263	19	399	15	394	15	
CW_Inv10	852	7	65	33	185	22	334	17	348	16	
CW_Sub	635	17	269	25	71	37	107	33	127	32	
CW_Trans01	691	7	220	18	123	23	212	19	195	19	
CW_Trans02	740	6	259	17	248	17	329	14	289	16	
CW_Trans03	790	5	332	14	354	14	431	12	381	13	
CW_Trans04	873	4	449	11	495	10	569	9	512	10	
CW_Trans05	963	3	565	9	624	8	697	7	636	8	
CW_Trans06	1075	2	515	10	627	8	730	6	687	7	
CW_Trans07	998	3	389	13	504	10	614	8	578	9	
CW_Trans08	931	3	255	17	375	13	496	10	473	11	
CW_Trans09	877	4	138	22	259	17	394	13	389	13	
CW_Trans10	848	4	67	29	181	20	329	14	343	14	

					Noise Receptor ID					
	RO	07	RO	34	RO	37	RO	38	RO	39
Source ID	Dist [m]	Sound Pressure Contribution [dBA]	Dist [m]	Sound Pressure Contribution [dBA]	Dist [m]	Sound Pressure Contribution [dBA]	Dist [m]	Sound Pressure Contribution [dBA]	Dist [m]	Sound Pressure Contribution [dBA]
CW_Fan01	696	7	248	17	139	23	220	18	223	18
CW_Fan02	750	6	280	16	258	17	338	14	321	15
CW_Fan03	804	5	347	14	363	14	440	12	414	12
CW_Fan04	891	4	458	11	503	10	578	9	545	10
CW_Fan05	984	3	571	9	632	8	706	7	669	7
CW_Fan06	1093	2	513	10	627	8	739	6	720	7
CW_Fan07	1013	3	389	13	502	10	622	8	610	8
CW_Fan08	942	4	257	17	371	13	504	10	504	10
CW_Fan09	884	4	147	22	251	17	402	13	416	12
CW_Fan10	852	5	91	27	166	21	335	14	365	14
CW_Inv01	699	12	245	21	137	27	221	22	225	22
CW_Inv02	753	11	278	20	257	21	339	19	323	19
CW_Inv03	807	10	345	18	362	18	441	16	415	17
CW_Inv04	893	9	457	16	502	15	578	14	546	14
CW_Inv05	986	8	570	14	631	13	706	12	670	12
CW_Inv06	1095	7	512	15	627	13	740	11	721	11
CW_Inv07	1015	8	388	17	503	15	623	13	611	13
CW_Inv08	945	9	256	21	371	18	506	15	505	15
CW_Inv09	887	9	146	26	252	21	404	17	418	17
CW_Inv10	854	10	89	31	168	25	338	19	368	18
CW_Sub	634	19	299	26	101	36	112	35	141	33
CW_Trans01	694	8	249	18	137	24	217	19	220	19
CW_Trans02	748	8	280	17	256	18	335	16	318	16
CW_Trans03	802	7	346	15	360	15	437	13	411	14
CW_Trans04	889	6	456	13	500	12	575	10	542	11
CW_Trans05	981	5	569	10	629	9	703	8	666	9
CW_Trans06	1090	4	510	12	624	10	736	8	717	8
CW_Trans07	1010	4	386	14	499	12	619	10	607	10
CW_Trans08	940	5	255	18	368	15	501	12	501	12
CW_Trans09	882	6	146	23	248	18	399	14	413	14
CW_Trans10	850	6	92	27	163	22	333	16	363	15

Table 4.2 4.5-m Case – Point of Reception Noise Impact from Individual Cornwall Solar Noise Sources

5. Mitigation Measures

Mitigation for operation of the Cornwall Solar Project has been modelled and shown to be feasible in the form of enclosures at all inverters. The enclosure transmission loss must be at least as specified in the table below. Note that the exhaust fans and medium voltage transformer will be outside the enclosures.

Frequency [Hz]	31.5	63	125	250	500	1000	2000	4000	8000
Transmission loss [dB]	0.0	9.0	7.0	7.0	11.0	18.0	19.0	14.0	13.0

The transmission loss above is based on the performance of Construction Specialties acoustical louver A8370. Technical information of the louver as well as its sound data can be found in Appendix B.

Currently, enclosures are planned to be installed at three inverter clusters of South Glengarry St. Lawrence-1 Solar Farm (Table B.2 and Table B.5), these enclosures were included in the noise model. No mitigation measure is planned at the Glendale Solar Project.

6. Impact Assessment

The purpose of the acoustic Assessment report is to demonstrate that the facility is in compliance with the noise performance limits. The Project will be located in a Class 3 Area, based on the classification defined in Publication NPC-232 by the MECP. Class 3 area means a rural area with an acoustical environment that is dominated by natural sounds, with little or no traffic noise, such as an agricultural area.

Table 6.1 shows the performance limits set by the MECP for Class 3 Areas, according to Publication NPC-232.

Time of Day	One Hour L _{eq} (dBA) Class 3 Area
07:00 to 19:00	45
19:00 to 23:00	40
23:00 to 07:00	40

 Table 6.1
 Performance Limits (One-Hour Leq) by Time of Day for Class 3 Areas.

The solar facility will be operating during the daylight hours, that is, between 07:00 and 19:00 during most days of the year. However, in the summer months the sun may shine until past 19:00, or before 07:00. As such, during the summer the facility will be operating at the time when the applicable performance limit changes from 45 dBA to 40 dBA. Also, the transformers remain energized at night. In order to account for this the study assumes that the facility will be operating 24 hours and compares the impact from the facility with the 40-dBA limit. In reality, the cooling fans will not be in operation at night.

For this study, the overall ground attenuation coefficient was estimated to be 0.7. Appendix F includes a list of all the parameters used in the CadnaA model to predict the sound pressure levels at the POR. The modelling does not consider the effect of the solar panels on the predicted sound pressure levels at the points of reception. The solar panels may act as barriers to further reduce noise at the POR.

6.1 Compliance With Performance Limits

Table 6.2 presents the predicted sound pressure levels for the Noise Receptors located within 1 km from the Project Site. Sound pressure contours at 4.5 m and 1.5 m are available in Figure C.1 and Figure C.2. Appendix F includes a detailed calculation log of the representative POR with the highest sound pressure level.

Following MECP recommendations provided on October 26, 2012 (e-mail from Enoch Tse to Steve Hichinson, Algonquin Power), the cumulative contributions from neighbouring projects do not apply to receptors R042 and R088 since they are proponents of the South Glengarry Solar Project. This e-mail is included in Appendix C.

The results of this study show that all POR are compliant with MECP guidelines based on the 40-dBA performance limit.

Table 6.2 Calculated Sound Pressure Levels at POR within 1 km of Cornwall Solar Project

(Shaded rows correspond to representative POR) Existing = Existing dwelling, Vacant = Vacant Lot.

The performance limit is 40.0 dBA.

				Point	of Rece	ption at	1.5 m			Point of Reception at 4.5 m									
		UTM Coo		Sound	Pressure		Near	rest Project	UTM Co	ordinates	9	Sound P	ressure		Nea	rest Project			
≘		NAD 83 Zone	NAD 83 Zone 18 [m]		Contribu	tion [dBA]		Source	NAD 83 Zone 18 [m]						Source			
Noise Receptor	Description	x	Y	Cornwall	Glendale	South Glengarry	Total	Dist[m]	<u>e</u>	x	Y	Cornwall	Glendale	South Glengarry	Total	Dist [m]	Q		
R001	Existing	524552	4994435	31.5	9.9	30.2	33.9	167	CW_Sub	524566	4994424	32.7	12.5	30.9	35.0	176	CW_Sub		
R002	Existing	524572	4994441	30.7	9.7	30.5	33.6	187	CW_Sub	524599	4994429	31.5	12.3	31.2	34.4	210	CW_Sub		
R003	Existing	524771	4994513	25.2	8.6	33.0	33.7	399	CW_Sub	524774	4994483	27.2	11.4	33.0	34.1	392	CW_Sub		
R004	Existing	524834	4994549	23.9	8.3	34.0	34.5	471	CW_Sub	524841	4994520	25.9	11.0	34.0	34.6	467	CW_Sub		
R005	Existing	524879	4994576	23.1	8.0	34.9	35.2	523	CW_Sub	524887	4994547	25.1	10.8	34.6	35.1	520	CW_Sub		
R006	Existing	524910	4994580	22.6	7.9	35.0	35.2	552	CW_Sub	524919	4994551	24.7	10.6	34.7	35.1	552	CW_Sub		
R007	Existing	524979	4994629	21.4	7.1	36.1	36.3	635	CW_Sub	524989	4994601	23.6	9.8	35.6	35.9	634	CW_Sub		
R008	Existing	525041	4994570	20.7	6.8	33.4	33.7	673	CW_Sub	525043	4994541	23.0	9.6	33.4	33.8	667	CW_Sub		
R009	Existing	525073	4994573	20.3	6.7	33.1	33.3	704	CW_Sub	525091	4994549	22.4	8.8	33.1	33.4	716	CW_Sub		
R010	Existing	525103	4994624	19.8	5.9	33.8	34.0	749	CW_Sub	525125	4994629	21.9	8.5	34.3	34.5	772	CW_Sub		
R011	Existing	525168	4994679	19.0	3.0	33.6	33.8	829	CW_Sub	525193	4994663	21.1	5.6	33.6	33.8	847	CW_Sub		
R012	Existing	525180	4994802	18.5	2.8	35.3	35.4	892	CW_Sub	525208	4994791	20.6	5.4	35.0	35.2	912	CW_Sub		
R013	Existing	524937	4995364	17.6	4.1	33.9	34.0	1017	CW_Trans05	524953	4995390	19.8	6.7	33.7	33.9	1043	CW_Trans05		
R014	Existing	523351	4994686	21.6	17.2	18.5	24.3	566	CW_Inv06	523321	4994686	23.5	20.0	19.6	26.1	596	CW_Inv06		
R015	Vacant	523521	4994768	24.4	15.6	20.4	26.2	388	CW_Inv06	523491	4994769	25.9	18.4	21.3	27.7	418	CW_Inv06		
R016	Existing	523572	4994481	24.8	16.2	20.1	26.5	448	CW_Inv07	523543	4994473	26.3	19.0	21.0	28.0	478	CW_Inv07		
R017	Existing	523576	4994423	24.5	16.3	19.8	26.2	473	CW_Inv07	523549	4994409	26.1	19.1	20.8	27.8	503	CW_Inv07		
R018	Existing	523645	4994587	26.8	15.3	21.2	28.1	328	CW_Inv06	523615	4994581	28.0	18.1	22.1	29.4	355	CW_Inv06		
R019	Existing	523646	4994382	25.4	15.8	20.3	26.9	436	CW_Inv08	523618	4994370	26.9	18.6	21.2	28.4	466	CW_Inv08		

Cornwall Solar Inc. - Cornwall Solar Project Noise Assessment Study Report - H336742

	Point of Reception at 1.5 m										P	oint of	Recept	ion at	4.5 m		
		UTM Coo	ordinates		Sound	Pressure	_	Near	est Project	UTM Co	ordinates	9	Sound Pr	ressure	_	Nea	rest Project
₽		NAD 83 Zone	C	ontribu	tion [dBA]		Source	NAD 83 Zone 18 [m]		Co	ontributi	on [dB/	A]		Source	
Noise Receptor	Description	x	Y	Cornwall	Glendale	South Glengarry	Total	Dist[m]	£	x	Y	Cornwall	Glendale	South Glengarry	Total	Dist [m]	£
R020	Existing	523646	4994217	23.9	16.1	19.5	25.7	524	CW_Inv08	523624	4994197	25.5	18.8	20.4	27.4	553	CW_Inv09
R021	Vacant	523666	4993457	16.7	15.2	14.9	20.4	1043	CW_Inv10	523660	4993427	18.9	17.7	16.2	22.5	1071	CW_Inv10
R022	Vacant	523694	4994137	23.7	15.8	19.4	25.5	526	CW_Inv09	523673	4994116	25.3	18.5	20.4	27.2	556	CW_Inv09
R023	Vacant	523693	4995312	21.5	12.4	21.9	24.9	561	CW_Inv05	523666	4995326	23.3	15.2	22.7	26.4	589	CW_Inv05
R024	Existing	523718	4994506	27.8	15.0	21.6	28.9	309	CW_Inv07	523692	4994490	29.0	17.8	22.5	30.1	339	CW_Inv07
R025	Existing	523721	4994286	25.7	15.4	20.5	27.1	423	CW_Inv08	523715	4994256	27.3	18.0	21.5	28.7	446	CW_Inv09
R026	Existing	523826	4994316	27.9	14.6	21.6	29.0	320	CW_Inv09	523804	4994294	29.1	17.3	22.5	30.2	349	CW_Inv09
R027	Existing	523786	4994181	25.4	15.0	20.4	26.9	425	CW_Inv10	523778	4994155	27.0	17.6	21.4	28.4	445	CW_Inv10
R028	Existing	523891	4994218	27.5	14.2	21.5	28.7	315	CW_Inv10	523869	4994197	28.7	16.9	22.4	29.9	344	CW_Inv10
R029	Existing	523900	4994317	29.4	14.0	22.3	30.3	254	CW_Inv09	523879	4994296	30.4	16.8	23.2	31.3	283	CW_Inv09
R030	Existing	523917	4994140	26.6	14.0	21.2	27.9	340	CW_Inv10	523898	4994117	27.9	16.8	22.1	29.2	370	CW_Inv10
R031	Existing	523959	4994060	25.6	13.8	20.9	27.1	374	CW_Inv10	523942	4994036	27.1	16.5	21.8	28.5	404	CW_Inv10
R032	Existing	523983	4994255	29.9	13.5	22.6	30.7	217	CW_Inv10	523961	4994234	30.7	16.3	23.4	31.6	247	CW_Inv10
R033	Vacant	524001	4994316	31.8	13.3	23.3	32.4	175	CW_Inv10	523978	4994296	32.3	16.1	24.0	33.0	203	CW_Inv10
R034	Existing	524135	4994315	37.3	12.4	24.6	37.6	65	CW_Inv10	524106	4994307	36.6	15.3	25.3	36.9	89	CW_Inv10
R035	Vacant	524152	4993765	21.8	12.3	19.5	24.1	606	CW_Trans10	524144	4993736	23.6	15.0	20.5	25.7	636	CW_Trans10
R036	Vacant	524228	4993554	19.1	11.6	17.9	22.0	819	CW_Trans10	524222	4993525	21.2	14.3	19.1	23.8	848	CW_Trans10
R037	Existing	524346	4994325	38.6	11.1	26.7	38.9	71	CW_Sub	524322	4994307	37.8	13.9	27.2	38.2	101	CW_Sub
R038	Existing	524499	4994343	34.6	10.2	28.2	35.5	107	CW_Sub	524502	4994338	35.9	12.9	29.0	36.7	112	CW_Sub
R039	Existing	524508	4994435	33.6	10.1	29.9	35.1	127	CW_Sub	524532	4994416	34.3	12.7	30.6	35.9	141	CW_Sub
R040	Existing	524795	4994418	24.8	8.6	30.8	31.8	400	CW_Sub	524766	4994394	27.3	11.5	31.1	32.7	370	CW_Sub
R041	Existing	524856	4994446	23.7	8.3	31.4	32.1	465	CW_Sub	524853	4994416	25.8	11.0	31.6	32.6	458	CW_Sub
R042	Existing	524937	4994621	22.0	7.7	36.3	36.5	593	CW_Sub	524948	4994593	24.2	10.4	35.8	36.1	593	CW_Sub

Cornwall Solar Inc. - Cornwall Solar Project Noise Assessment Study Report - H336742

	Point of Reception at 1.5 m										P	oint of	Recept	ion at	4.5 m		
		UTM Coo	ordinates		Sound	Pressure	_	Near	est Project	UTM Co	ordinates	9	Sound Pr	ressure	_	Nea	rest Project
₽		NAD 83 Zone	C	Contribu	tion [dBA]		Source	NAD 83 Z	one 18 [m]	Co	ontributi	on [dB/	A]		Source	
Noise Receptor	Description	x	Y	Cornwall	Glendale	South Glengarry	Total	Dist[m]	Q	x	Y	Cornwall	Glendale	South Glengarry	Total	Dist [m]	£
R043	Existing	524952	4994491	22.1	7.7	32.2	32.6	567	CW_Sub	524962	4994463	24.1	10.0	32.3	32.9	572	CW_Sub
R045	Existing	524982	4994520	21.6	7.2	32.7	33.1	603	CW_Sub	524991	4994491	23.7	9.9	32.8	33.3	605	CW_Sub
R046	Existing	525071	4994597	20.3	6.6	33.7	33.9	710	CW_Sub	525078	4994577	22.5	8.8	33.9	34.2	711	CW_Sub
R047	Existing	525095	4994483	20.1	6.1	30.8	31.2	707	CW_Sub	525125	4994489	22.0	8.7	31.5	32.0	737	CW_Sub
R048	Existing	525145	4994442	19.5	5.9	29.5	29.9	751	CW_Sub	525170	4994424	21.5	7.8	29.9	30.5	775	CW_Sub
R049	Vacant	525193	4994363	18.8	4.2	27.7	28.3	797	CW_Sub	525211	4994339	21.0	6.8	28.3	29.0	815	CW_Sub
R050	Existing	525210	4994495	18.7	3.0	29.6	30.0	822	CW_Sub	525237	4994481	20.8	5.6	30.0	30.5	847	CW_Sub
R051	Vacant	525281	4994224	17.6	2.7	25.1	25.9	896	CW_Sub	525298	4994200	19.8	3.9	25.8	26.8	918	CW_Sub
R052	Vacant	525279	4994743	17.6	0.8	31.8	32.0	956	CW_Sub	525306	4994731	19.8	0.6	32.0	32.3	977	CW_Sub
R053	Existing	525299	4994357	17.7	1.1	26.6	27.2	902	CW_Sub	525317	4994333	19.9	3.8	27.2	28.0	921	CW_Sub
R054	Existing	523027	4993973	16.0	22.9	13.9	24.1	1174	CW_Inv08	523057	4993971	18.8	24.8	15.6	26.1	1149	CW_Inv08
R055	Existing	523112	4993991	16.8	21.7	14.5	23.5	1092	CW_Inv08	523142	4993991	19.5	23.7	16.2	25.6	1066	CW_Inv08
R056	Existing	523131	4993999	17.0	21.5	14.7	23.4	1071	CW_Inv08	523161	4993995	19.7	23.5	16.3	25.5	1048	CW_Inv08
R057	Existing	523147	4994309	18.4	20.6	15.9	23.5	896	CW_Inv06	523168	4994284	21.0	22.9	17.4	25.7	892	CW_Inv06
R059	Existing	523164	4994127	17.9	20.9	15.4	23.4	980	CW_Inv07	523194	4994126	20.6	23.0	17.0	25.6	954	CW_Inv08
R060	Existing	523185	4994324	18.9	20.2	16.2	23.5	856	CW_Inv06	523213	4994334	21.6	22.2	17.8	25.7	827	CW_Inv06
R061	Existing	523326	4994636	21.3	17.6	18.2	24.1	601	CW_Inv06	523296	4994638	23.1	20.4	19.3	26.0	630	CW_Inv06
R062	Existing	523269	4994083	18.6	19.8	15.9	23.2	909	CW_Inv08	523298	4994077	21.3	21.9	17.5	25.4	887	CW_Inv08
R063	Existing	523309	4994003	18.6	19.4	15.9	22.9	921	CW_Inv08	523324	4993982	21.0	21.7	17.3	25.1	921	CW_Inv09
R064	Existing	523437	4994036	20.0	18.1	16.9	23.3	796	CW_Inv09	523395	4994006	21.7	21.0	17.9	25.2	847	CW_Inv09
R065	Existing	523434	4994129	20.6	18.0	17.3	23.7	746	CW_Inv08	523417	4994121	22.7	20.7	18.5	25.7	764	CW_Inv08
R066	Existing	523467	4993951	19.6	17.8	16.7	23.0	816	CW_Inv10	523451	4993926	21.6	20.4	17.9	25.0	843	CW_Inv10
R067	Existing	523465	4994173	21.3	17.7	17.8	24.0	696	CW_Inv08	523450	4994147	23.2	20.4	18.9	26.0	723	CW_Inv08

Cornwall Solar Inc. - Cornwall Solar Project Noise Assessment Study Report - H336742

	Point of Reception at 1.5 m										P	oint of	Recept	ion at 4	4.5 m		
		UTM Coo	ordinates		Sound	Pressure		Near	est Project	UTM Co	ordinates	9	Sound P	ressure		Nea	rest Project
≙		NAD 83 Zone 18 [m]		C	Contribu	tion [dBA]		Source		NAD 83 Zone 18 [m]		ntributi	on [dB/	A]		Source
Noise Receptor	Description	x	Y	Cornwall	Glendale	South Glengarry	Total	Dist[m]	Q	x	Y	Cornwall	Glendale	South Glengarry	Total	Dist [m]	Q
R068	Existing	523484	4994063	20.6	17.6	17.4	23.6	742	CW_Inv09	523468	4994038	22.6	20.3	18.5	25.6	768	CW_Inv09
R069	Existing	523528	4994084	21.3	17.2	17.8	23.9	693	CW_Inv09	523512	4994058	23.2	19.9	18.9	25.8	720	CW_Inv09
R070	Existing	523537	4994218	22.5	17.0	18.6	24.7	611	CW_Inv08	523515	4994198	24.2	19.7	19.6	26.5	640	CW_Inv08
R071	Existing	523538	4994088	21.4	17.1	17.9	24.0	683	CW_Inv09	523538	4994063	23.5	19.6	19.1	26.0	697	CW_Inv09
R072	Vacant	523611	4994102	22.3	16.5	18.5	24.6	614	CW_Inv09	523593	4994078	24.1	19.2	19.6	26.4	643	CW_Inv09
R073	Existing	524712	4994475	26.5	9.0	31.9	33.0	331	CW_Sub	524712	4994445	28.5	11.7	32.0	33.7	323	CW_Sub
R074	Existing	523634	4994276	24.3	16.1	19.7	26.0	498	CW_Inv08	523632	4994246	26.1	18.7	20.8	27.8	517	CW_Inv08
R075	Vacant	523194	4996002	12.8	11.1	14.8	17.9	1412	CW_Inv05	523176	4996026	15.2	13.7	16.1	19.9	1442	CW_Inv05
R076	Existing	524709	4994392	26.7	9.1	30.1	31.8	312	CW_Sub	524716	4994363	28.3	11.7	30.4	32.6	319	CW_Sub
R077	Vacant	523457	4996155	12.7	9.6	15.7	18.2	1409	CW_Fan05	523437	4996178	15.2	12.2	16.9	20.0	1438	CW_Fan05
R078	Existing	524557	4994352	31.4	9.9	28.7	33.3	162	CW_Sub	524577	4994338	32.2	12.5	29.5	34.1	184	CW_Sub
R079	Existing	525031	4994545	20.9	6.9	32.9	33.2	657	CW_Sub	525043	4994518	23.0	9.6	32.9	33.4	662	CW_Sub
R080	Existing	522945	4995810	12.7	12.9	13.9	18.0	1411	CW_Inv06	522927	4995834	15.2	15.4	15.2	20.0	1441	CW_Inv06
R081	Existing	524171	4993725	21.3	12.2	19.2	23.7	646	CW_Trans10	524166	4993695	23.1	14.8	20.2	25.3	676	CW_Trans10
R082	Existing	523643	4994581	26.7	15.4	21.1	28.0	332	CW_Inv06	523620	4994562	28.0	18.2	22.0	29.4	362	CW_Inv06
R083	Existing	523644	4996197	12.9	8.8	16.6	18.6	1382	CW_Fan05	523625	4996221	15.3	11.5	17.8	20.3	1410	CW_Fan05
R084	Vacant	522828	4995731	12.5	13.7	13.3	18.0	1440	CW_Inv06	522807	4995753	15.0	16.2	14.7	20.1	1470	CW_Inv06
R085	Existing	523375	4994675	22.0	17.1	18.7	24.5	545	CW_Inv06	523345	4994675	23.8	19.8	19.8	26.3	574	CW_Inv06
R086	Existing	525251	4994504	18.3	2.8	29.2	29.6	864	CW_Sub	525270	4994481	20.4	3.9	29.6	30.1	880	CW_Sub
R087	Vacant	523738	4996391	11.7	7.4	15.9	17.7	1547	CW_Fan05	523723	4996417	14.2	10.1	17.1	19.4	1575	CW_Fan05
R088	Existing	525055	4994862	19.6	*	*	*	819	CW_Sub	525084	4994856	21.7	*	*	*	840	CW_Sub

Note: R088, located nearest to the South Glengarry solar site was not included with the 2011 South Glengarry AAR, and therefore adjacent facility contributions excluded. *Since R042 and R088 are owned by the proponent of South Glengarry Solar Project, noise levels at these receptors have not been calculated

7. Conclusions and Recommendations

For the Cornwall Solar Project, the sound pressure levels at the Noise Receptors have been estimated using the CadnaA model, based on ISO 9613-2. Mitigation for operation of the Project has been modelled and shown to be feasible.

Based on the results obtained in this study, it is concluded that the sound pressure levels at the Noise Receptors, resulting from the Cornwall Solar Project operation, will be compliant with MECP requirements for Class 3 areas of 40 dBA at all times.

Signatures

Report Prepared By

Mufaddal Motiwala, B.Eng, EIT <u>mufaddal.motiwala@hatch.com</u> (289) 302-1683

Report Reviewed and Approved By

Mervyn Choy, P.Eng. mervy.choy@hatch.com (289) 326-2740

8. References

Ontario Regulation 359/09. Environmental Protection Act. Renewable Energy Approvals Under Part V.0.1 of the Act.

Ontario Regulation 521/10 made under Environmental Protection Act Amending Ontario Regulation 359/09.

Ministry of the Environment, Conservation and Parks (MECP). 2004. Basic Comprehensive Certificates of Approval (Air) – User Guide (Appendix A). Environmental Assessment and Approvals Branch.

M.J. Crocker, 2007, "Handbook of Noise and Vibration Control".

IEEE. 2006. C57.12.90-2006: Standard Test Code for Liquid-Immersed, Power and Regulating Transformers. pp 64 to 76.

Ministry of the Environment, Conservation and Parks (MECP). 1997. Noise Assessment Criteria in Land Use Planning. Publication LU-131. Ontario Ministry of the Environment. 12 pp + Annex.

Ministry of the Environment, Conservation and Parks (MECP). 1995. Sound Level Limits for Stationary Sources in Class 1 & 2 Areas (Urban). Publication NPC-205. Ontario Ministry of the Environment. 6 pp + Annex.

Ministry of the Environment, Conservation and Parks (MECP). 1995. Sound Level Limits for Stationary Sources in Class 3 Areas (Rural). Publication NPC-232. Ontario Ministry of the Environment. 8 pp + Annex.

NEMA. 2000. Standards Publication No. TR 1-1993 (R2000): Transformers, Regulators and Reactors. National Electrical Manufacturers Association.

International Organization for Standardization (ISO). Standard 1996-1: Description, Measurement and Assessment of Environmental Noise – Part 1: Basic Quantities and Assessment Procedures.

International Organization for Standardization (ISO). Standard 1913-2: Acoustics – Attenuation of sound during propagation outdoors – Part 2: General Method of Calculation.

Appendix A Land Use Zoning Designation Plan and Area Location Plan

P:\336742\SPECIALIST_APPS\Corwall\Cornwall_Noise_A1_Zoning.mxd Date Saved: 3/5/2013 9:36:10 AM

)	100	200	400	600
				Metres

P:\336742\SPECIALIST_APPS\Corwall\Cornwall_Noise_A2_Adjacent.mxd Date Saved: 3/5/2013 9:34:57 AM

Notes:

 Produced by Hatch under licence from Ontario Ministry of Natural Resources, Copyright (c) Queens Printer 2011.
 Spatial referencing UTM NAD 83.

0	100 200	400	600	800
1:	20,000			Metres

Figure A.2 Cornwall Solar Inc. Cornwall Solar Project Scaled Area Location Plan - Adjacent Projects

P:\336742\SPECIALIST_APPS\Corwall\Cornwall_Noise_A3_ScaledF Date Saved: 6/4/2013 11:44:12 AM

•	100	200	100	000
0	100	200	400	600

Appendix B Noise Sources

							UTM Coo	rdinates
				e la	_	_	NAD 83, 2	Zone 18
Source ID	Description	Sound Power ID	Enclosure attenuation ID	Total sour power lev (dBA)	Correction (dBA)	Height (m	x	Y
CW_Fan01	CWB-101-4 exhaust fan at CW_Cluster01	Fan_CWB_101_4		78.2	5	2	524311	4994446
CW_Fan02	CWB-101-4 exhaust fan at CW_Cluster02	Fan_CWB_101_4		78.2	5	2	524241	4994552
CW_Fan03	CWB-101-4 exhaust fan at CW_Cluster03	Fan_CWB_101_4		78.2	5	2	524186	4994644
CW_Fan04	CWB-101-4 exhaust fan at CW_Cluster04	Fan_CWB_101_4		78.2	5	2	524113	4994765
CW_Fan05	CWB-101-4 exhaust fan at CW_Cluster05	Fan_CWB_101_4		78.2	5	2	524044	4994875
CW_Fan06	CWB-101-4 exhaust fan at CW_Cluster06	Fan_CWB_101_4		78.2	5	2	523912	4994782
CW_Fan07	CWB-101-4 exhaust fan at CW_Cluster07	Fan_CWB_101_4		78.2	5	2	523979	4994675
CW_Fan08	CWB-101-4 exhaust fan at CW_Cluster08	Fan_CWB_101_4		78.2	5	2	524048	4994557
CW_Fan09	CWB-101-4 exhaust fan at CW_Cluster09	Fan_CWB_101_4		78.2	5	2	524118	4994454
CW_Fan10	CWB-101-4 exhaust fan at CW_Cluster10	Fan_CWB_101_4		78.2	5	2	524169	4994373
CW_Inv01	Two Schneider Electric GT500 MVX inverters at CW_Cluster01	Inv_X2_1.0MW_Xnrx_GT500	Louver_A8370	83.8	5	2.3	524308	4994444
CW_Inv02	Two Schneider Electric GT500 MVX inverters at CW_Cluster02	Inv_X2_1.0MW_Xnrx_GT500	Louver_A8370	83.8	5	2.3	524239	4994551
CW_Inv03	Two Schneider Electric GT500 MVX inverters at CW_Cluster03	Inv_X2_1.0MW_Xnrx_GT500	Louver_A8370	83.8	5	2.3	524184	4994642
CW_Inv04	Two Schneider Electric GT500 MVX inverters at CW_Cluster04	Inv_X2_1.0MW_Xnrx_GT500	Louver_A8370	83.8	5	2.3	524111	4994763
CW_Inv05	Two Schneider Electric GT500 MVX inverters at CW_Cluster05	Inv_X2_1.0MW_Xnrx_GT500	Louver_A8370	83.8	5	2.3	524042	4994873
CW_Inv06	Two Schneider Electric GT500 MVX inverters at CW_Cluster06	Inv_X2_1.0MW_Xnrx_GT500	Louver_A8370	83.8	5	2.3	523909	4994780
CW_Inv07	Two Schneider Electric GT500 MVX inverters at CW_Cluster07	Inv_X2_1.0MW_Xnrx_GT500	Louver_A8370	83.8	5	2.3	523977	4994673
CW_Inv08	Two Schneider Electric GT500 MVX inverters at CW_Cluster08	Inv_X2_1.0MW_Xnrx_GT500	Louver_A8370	83.8	5	2.3	524046	4994556
CW_Inv09	Two Schneider Electric GT500 MVX inverters at CW_Cluster09	Inv_X2_1.0MW_Xnrx_GT500	Louver_A8370	83.8	5	2.3	524115	4994452
CW_Inv10	Two Schneider Electric GT500 MVX inverters at CW_Cluster10	Inv_X2_1.0MW_Xnrx_GT500	Louver_A8370	83.8	5	2.3	524166	4994371
CW_Sub	34.5-kV/44-kV/10-MVA substation transformer	Tr_34.5kV_44kV_10MVA		86.6	5	3.5	524397	4994374
CW_Trans01	208-V/34.5-kV/1-MVA WEG transformer at CW_Cluster01	Tr_200V_34.5kV_1MVA		78.3	5	2	524313	4994444
CW_Trans02	208-V/34.5-kV/1-MVA WEG transformer at CW_Cluster02	Tr_200V_34.5kV_1MVA		78.3	5	2	524243	4994551
CW_Trans03	208-V/34.5-kV/1-MVA WEG transformer at CW_Cluster03	Tr_200V_34.5kV_1MVA		78.3	5	2	524189	4994642
CW_Trans04	208-V/34.5-kV/1-MVA WEG transformer at CW_Cluster04	Tr_200V_34.5kV_1MVA		78.3	5	2	524116	4994763
CW_Trans05	208-V/34.5-kV/1-MVA WEG transformer at CW_Cluster05	Tr_200V_34.5kV_1MVA		78.3	5	2	524047	4994873
CW_Trans06	208-V/34.5-kV/1-MVA WEG transformer at CW_Cluster06	Tr_200V_34.5kV_1MVA		78.3	5	2	523914	4994780

Table B.1 Point Sources from Cornwall Solar Project Used in CadnaA, Includes 5.0-dBA Tonality Penalty and Enclosure Attenuation at the Inverters

Cornwall Solar Inc. - Cornwall Solar Project

Noise Assessment Study Report - H336742

				el	_		UTM Coordinates NAD 83, Zone 18	
Source ID	Description	Sound Power ID	Enclosure attenuation ID	Total soun power lev (dBA)	Correction (dBA)	Height (m)	х	Y
CW_Trans07	208-V/34.5-kV/1-MVA WEG transformer at CW_Cluster07	Tr_200V_34.5kV_1MVA		78.3	5	2	523982	4994673
CW_Trans08	208-V/34.5-kV/1-MVA WEG transformer at CW_Cluster08	Tr_200V_34.5kV_1MVA		78.3	5	2	524051	4994556
CW_Trans09	208-V/34.5-kV/1-MVA WEG transformer at CW_Cluster09	Tr_200V_34.5kV_1MVA		78.3	5	2	524120	4994452
CW_Trans10	208-V/34.5-kV/1-MVA WEG transformer at CW_Cluster10	Tr_200V_34.5kV_1MVA		78.3	5	2	524171	4994371

	_						UTM Coord	dinates
٥	ion	0	e	unc	uo	Ê	NAD 83, Zo	one 18
Source I	Descript	Sound Power II	Enclosu attenua ID	Total so power le (dBA)	Correcti (dBA)	Height (x	Y
GL_Sub	34.5-kV/44-kV/10-MVA substation transformer	GL_T44kV_10MVA	GL_10MW_Tr_Corr	85.8	5	3.5	522294	4993696
GL_Inv1	Two Sunny Central 800CP at GL_Cluster1	GL_SMA_SC800CPX2	GL_MV_Gen_Corr	86.3	5	2.6	521955	4994431
GL_Inv2	Two Sunny Central 800CP at GL_Cluster2	GL_SMA_SC800CPX2	GL_MV_Gen_Corr	86.3	5	2.6	522162	4994354
GL_Inv3	Two Sunny Central 800CP at GL_Cluster3	GL_SMA_SC800CPX2	GL_MV_Gen_Corr	86.3	5	2.6	522100	4994199
GL_Inv4	Two Sunny Central 800CP at GL_Cluster4	GL_SMA_SC800CPX2	GL_MV_Gen_Corr	86.3	5	2.6	522281	4994199
GL_Inv5	Two Sunny Central 800CP at GL_Cluster5	GL_SMA_SC800CPX2	GL_MV_Gen_Corr	86.3	5	2.6	522390	4994010
GL_Inv6	Two Sunny Central 800CP at GL_Cluster6	GL_SMA_SC800CPX2	GL_MV_Gen_Corr	86.3	5	2.6	522209	4994010
GL_Inv7	Two Sunny Central 800CP at GL_Cluster7	GL_SMA_SC800CPX2	GL_MV_Gen_Corr	86.3	5	2.6	522498	4993829
GL_Trans1	360-V/34.5-kV/1.6-MVA transformer at GL_Cluster1	GL_T27.6kV_1.6MVA	GL_Tr_Corr	75.1	5	2.6	521950	4994431
GL_Trans2	360-V/34.5-kV/1.6-MVA transformer at GL_Cluster2	GL_T27.6kV_1.6MVA	GL_Tr_Corr	75.1	5	2.6	522157	4994354
GL_Trans3	360-V/34.5-kV/1.6-MVA transformer at GL_Cluster3	GL_T27.6kV_1.6MVA	GL_Tr_Corr	75.1	5	2.6	522095	4994199
GL_Trans4	360-V/34.5-kV/1.6-MVA transformer at GL_Cluster4	GL_T27.6kV_1.6MVA	GL_Tr_Corr	75.1	5	2.6	522276	4994199
GL_Trans5	360-V/34.5-kV/1.6-MVA transformer at GL_Cluster5	GL_T27.6kV_1.6MVA	GL_Tr_Corr	75.1	5	2.6	522384	4994010
GL_Trans6	360-V/34.5-kV/1.6-MVA transformer at GL_Cluster6	GL_T27.6kV_1.6MVA	GL_Tr_Corr	75.1	5	2.6	522203	4994010
GL_Trans7	360-V/34.5-kV/1.6-MVA transformer at GL_Cluster7	GL_T27.6kV_1.6MVA	GL_Tr_Corr	75.1	5	2.6	522493	4993829
SG_NS_01	Two 500 kW inverters at SG_Cluster01	SG_Inv_1MW	SG_MV01_Gen_Corr	88	5	1.5	524587	4994981
SG_NS_02	Two 500 kW inverters at SG_Cluster02	SG_Inv_1MW	SG_MV_Gen_Corr	91	5	1.5	524595	4995076
SG_NS_03	Two 500 kW inverters at SG_Cluster03	SG_Inv_1MW	SG_MV_Gen_Corr	91	5	1.5	524627	4994781
SG_NS_04	Two 500 kW inverters at SG_Cluster04	SG_Inv_1MW	SG_MV_Gen_Corr	91	5	1.5	524638	4994914
SG_NS_05	Two 500 kW inverters at SG_Cluster05	SG_Inv_1MW	SG_MV_Gen_Corr	91	5	1.5	524652	4995066
SG_NS_06	Two 500 kW inverters at SG_Cluster06	SG_Inv_1MW	SG_MV_Gen_Corr	91	5	1.5	524754	4995247
SG_NS_07	Two 500 kW inverters at SG_Cluster07	SG_Inv_1MW	SG_MV_Gen_Corr	91	5	1.5	524896	4994772
SG_NS_08	Two 500 kW inverters at SG_Cluster08	SG_Inv_1MW	SG_MV_Gen_Corr	91	5	1.5	524908	4994905
SG_NS_09	Two 500 kW inverters at SG_Cluster09	SG_Inv_1MW	SG_MV_Gen_Corr	91	5	1.5	524921	4995057
SG_NS_10	Two 500 kW inverters at SG_Cluster10	SG_Inv_1MW	SG_MV_Gen_Corr	91	5	1.5	524968	4994933
SG_NS_11	1 MVA transformer at SG_Cluster01	SG_Trans_1MVA	SG_Tr_Corr	69	5	1.5	524592	4994980
SG_NS_12	1 MVA transformer at SG_Cluster02	SG_Trans_1MVA	SG_Tr_Corr	69	5	1.5	524600	4995075

Table B.2 Point Sources from Glendale Solar Project (GL) and South Glengarry St. Lawrence-1 Solar Farm (SG) Used in CadnaA, Includes 5.0-dBA Tonality Penalty and Correction Factors to match overall Sound Powers identified in Renewable Energy Approvals (Appendix D)

Cornwall Solar Inc. - Cornwall Solar Project

D io			e iion	lav:	n	<u>ب</u>	UTM Coor NAD 83, Zo	dinates one 18
Source II	Descript	Sound Power II	Enclosur attenuat ID	Total sou power le (dBA)	Correctio (dBA)	Height (I	x	Y
SG_NS_13	1 MVA transformer at SG_Cluster03	SG_Trans_1MVA	SG_Tr_Corr	69	5	1.5	524622	4994782
SG_NS_14	1 MVA transformer at SG_Cluster04	SG_Trans_1MVA	SG_Tr_Corr	69	5	1.5	524634	4994914
SG_NS_15	1 MVA transformer at SG_Cluster05	SG_Trans_1MVA	SG_Tr_Corr	69	5	1.5	524647	4995067
SG_NS_16	1 MVA transformer at SG_Cluster06	SG_Trans_1MVA	SG_Tr_Corr	69	5	1.5	524750	4995247
SG_NS_17	1 MVA transformer at SG_Cluster07	SG_Trans_1MVA	SG_Tr_Corr	69	5	1.5	524901	4994772
SG_NS_18	1 MVA transformer at SG_Cluster08	SG_Trans_1MVA	SG_Tr_Corr	69	5	1.5	524913	4994905
SG_NS_19	1 MVA transformer at SG_Cluster09	SG_Trans_1MVA	SG_Tr_Corr	69	5	1.5	524926	4995056
SG_NS_20	1 MVA transformer at SG_Cluster10	SG_Trans_1MVA	SG_Tr_Corr	69	5	1.5	524963	4994933
SG_NS_21	10 MVA substation transformer	SG_Trans_10MVA	SG_10MW_Tr_Corr	88	5	2.0	525013	4994843

Note:

1. Attenuation SG_MV01_Gen_Corr is a correction applied in order to meet overall levels noted in the 2013 South Glengarry REA (Appendix D)

2. Attenuation SG_MV_Gen_Corr is a correction applied in order to meet overall levels noted in the 2013 South Glengarry REA (Appendix D)

3. Attenuation SG _Tr_Corr is a correction applied in order to meet overall levels noted in the 2013 South Glengarry REA (Appendix D)

4. Attenuation SG_10MW_Tr_Corr is a correction applied in order to meet overall levels noted in the 2013 South Glengarry REA (Appendix D)

5. Attenuation GL_MV_Gen_Corr is a correction applied in order to meet overall levels noted in the 2012 Glendale REA (Appendix D)

6. Attenuation GL_Tr_Corr is a correction applied in order to meet overall levels noted in the 2012 Glendale REA (Appendix D)

7. Attenuation GL_10MW_Tr_Corr is a correction applied in order to meet overall levels noted in the 2012 Glendale REA (Appendix D)

Cornwall Solar Inc. - Cornwall Solar Project

Noise Assessment Study Report - H336742

Table B.3 Noise Source Spectra Excluding Tonality Penalties and Adjustments to Achieve Overall REA Levels

					Octave S	pectrum	(dB)				
Spectra ID	Weight	31.5	63	125	250	500	1000	2000	4000	8000	Total (dBA)
GL_SMA_SC800CPX2			89.3	90.0	89.1	85.5	78.7	72.9	64.0	73.8	86.3
GL_T27.6kV_1.6MVA		71.3	77.3	79.3	74.3	74.3	68.3	63.3	58.3	51.3	74.7
GL_T44kV_10MVA		82.4	88.4	90.4	85.4	85.4	79.4	74.4	69.4	62.4	85.8
SG_Trans_10MVA			86.5	88.5	83.5	83.5	77.5	72.5	67.5	60.5	83.9
SG_Trans_1MVA			75.0	77.0	72.0	72.0	66.0	61.0	56.0	49.0	72.4
Tr_200V_34.5kV_1MVA		69.9	75.9	77.9	72.9	72.9	66.9	61.9	56.9	49.9	73.3
Tr_34.5kV_44kV_10MVA		78.2	84.2	86.2	81.2	81.2	75.2	70.2	65.2	58.2	81.6
Inv_X2_1.0MW_Xnrx_GT500			81.7	89.3	89.1	85.6	86.0	80.6	75.9	88.1	91.5
Fan_CWB_101_4			73.0	72.0	78.0	69.0	63.0	66.0	58.0	52.0	73.2

Table B.4 Transmission Loss Used in CadnaA to Model Enclosures of Cornwall Solar Project

Creative ID				Oct	ave Spec	trum (dB	5)			Duu
Spectra ID	31.5	63	125	250	500	1000	2000	4000	8000	ĸw
Louver_A8370	0.0	9.0	7.0	7.0	11.0	18.0	19.0	14.0	13.0	16.0

Table B.5 Transmission Loss Used in CadnaA to Model Enclosures of South Glengarry St. Lawrence-1 Solar Farm

Crace stree ID				Oct	ave Spec	trum (dB	5)			Duu
Spectra ID	31.5	63	125	250	500	1000	2000	4000	8000	RW
SG_Louver	0.0	0.0	0.0	1.0	4.0	7.0	6.0	0.0	0.0	6.0

GT500 480, GT500 600, GT500 MVX

The GT500 is a Grid Tie Solar Inverter for large commercial and utility applications with a CEC efficiency of 96 percent. The GT500 features an industrial design for improved reliability. A two-section enclosure, with inverter and DC section in one cabinet and transformer and AC section in another, reduces installation time and simplifies site preparation requirements. This new inverter design also integrates high-quality Schneider Electric components, including AC and DC circuit breakers and a transformer.

> Features

- Ultra-efficient design with CEC efficiency of 97% (GT500 MVX version)
- Option to connect directly to medium voltage using a customer-supplied transformer or transformer supplied by Schneider Electric
- Integrated design with isolation transformer (480 V and 600 V only) in one unit
- Includes AC and DC disconnects
- Integrated ground fault detection and interruption
- Soft-start circuit to reduce nuisance trips (480 V and 600 V only)
- Sensitive components are protected from the environment while heat-generating components are in the cooling airflow
- Back and sides of unit designed for zero clearance installations to minimize inverter space requirements
- Wiring access points on bottom and sides of inverter
- Designed for forklift or sling transportation
- Zinc-primed and powder-coated steel enclosure for maximum corrosion resistance
- Designed to help maximize reliability with film-type capacitors and bus bars in the power path
- Bright fluorescent green vacuum display with UV cover for ease of reading in sunlight
- RS485/Modbus communications

GT500 480

GT500 MVX

> Options

- PV Box solution with multiple inverters and medium-voltage transformers
- Fused sub-array combiner integrated with the inverter enclosure
- Sub-array string monitoring
- Positive-ground configuration
- Remote monitoring and control options
- Preventive maintenance programs
- Warranty extensions and service contracts with uptime guarantees

Schneider Electric

Make the most of your energy[™]

Device short name	GT500 480	GT500 600	GT500 MVX					
Electrical specifications								
Input (DC)								
Photovoltaic power	521 kW	521 kW	521 kW					
Input voltage range, MPPT	310 to 480 V	310 to 480 V	310 to 480 V					
Max. input voltage, open circuit	600 V	600 V	600 V					
Max. input current	1,720 A	1,720 A	1,700 A					
Output (AC)								
Nominal output power	500 kW	500 kW	500 kW					
Output voltage	480 V	600 V	208 V (for direct connection to a medium-voltage isolation transformer)					
Frequency	60 Hz	60 Hz	60 Hz					
Nominal output current	610 A	490 A	1,400 A					
Power factor	> 0.99	> 0.99	> 0.99 (+/- 0.9 adjustable)					
Harmonic distortion	< 3% at rated power	< 3% at rated power	< 3% at rated power					
Efficiency								
Peak	97.0%	97.0%	98% not including MV transformer					
CEC weighted	96.0%	96.0%	97% not including MV transformer					
General specifications								
Power consumption, night time	< 161 W	< 161 W	< 161 W					
NEMA [®] degree of protection	Type 3R (outdoor rating)	Type 3R (outdoor rating)	Type 3R (outdoor rating)					
Product weight	3,103 kg (6,840 lb)	3,103 kg (6,840 lb)	1,587 kg (3,499 lb)					
Product dimensions (H \times W \times D)	224.0 × 463.8 × 108.7 cm (88.2 × 182.6 × 42.8 in)	224.0 × 463.8 × 108.7 cm (88.2 × 182.6 × 42.8 in)	224.6 × 228.6 × 126 cm (88.4 × 90.0 × 49.6 in)					
Ambient air temperature for operation		-20 °C to 50 °C (-4 °F to 122 °F)						
Operating altitude	l	Jp to 2,012 m (6,600 ft) without deratin	g					
Relative humidity		0 to 95% non-condensing						
Part number	820-0076-01-01	820-0076-02-01	820-0150-01-01*					
Features and options								
Type of cooling		Forced convection cooling						
Display type	Stand	dard bright fluorescent green vacuum d	lisplay					
Communication interface	Standar	d RS485/Modbus communications inte	erface kit					
AC/DC disconnect	Standa	rd and integrated within the inverter er	nclosure					
Ground fault detection/interruption	Standa	rd and integrated within the inverter er	closure					
Sub-array combiner	Optional integrated	Optional integrated with the inverter enclosure, 100 A, 150 A, or 200 A circuits						
Regulatory approvals								
Safety	CS	A certified to UL 1741 Ed. 2, CSA 107.	1-01					
Interconnect		IEEE 1547						

Specifications are subject to change without notice.

* Other options available upon request.

> For more information, visit www.schneider-electric.com.

Schneider Electric USA

1415 S. Roselle Road Palatine, IL 60067 Tel: 847-397-2600 Fax: 847-925-7500 www.schneider-electric.com

490 Post Street * Suite 1427 San Francisco * CA * 94102 * USA Tel. / Fax: (+1) 415-693-0424 / 1398 http://www.va-consult.com

MEMORANDUM

PAGE 1 OF 6

DATE:	20 July 2009		
To:	Tony Fuertsch	EMAIL:	Tony.Fuertsch@Xantrex.com
FROM:	J. Byron Davis, VACC	EMAIL:	byron@va-consult.com
SUBJECT:	Xantrex Power Inverter - Sound	Power Measure	ments (00485)

Dear Tony,

We are pleased to submit this report regarding the recent testing of a Xantrex GT500 inverter.

Background

As we understand it, Xantrex has a client that requires detailed noise testing of the GT500, a 500kW power inverter for solar applications. Xantrex requested that we perform the noise testing to satisfy this and future client requests.

We visited Xantrex's facility in Livermore, CA on Wednesday 8 July 2009 to perform testing. The testing space was a large, high-bay warehouse-type setting, illustrated in Figure 1. The ceiling was lined with exposed fiberglass insulation, resulting in less reverberation than expected for this type of room. Adjacent equipment not included in the package included a DC power supply simulator and a large freestanding transformer. We chose to develop sound power data using the sound intensity method in order to minimize contamination from adjacent sources.

Since sound power is a property of the source being tested (rather than the cumulative result of multiple sources interacting with the environment), these data are applicable to many different installation conditions. In this document, we report the measured sound power levels and sound pressure levels and provide commentary on how we would insert this source into computer-based noise propagation models.

Test Conditions

We measured sound power using our standard testing suite:

Instrument	Make / Model	Identification
Signal Analyzer	Larson-Davis 3000	S/N 175
Intensity Probe	Gras I50AIC	S/N 6637
Paired Microphones	Gras 40AI	S/N 23083 & 23089
Paired Microphone Preamps	Gras 6AA	S/N 15082 & 15083
Residual Intensity Calibrator	Larson-Davis CAL291	S/N 156
SPL Calibrator	Bruel & Kjaer 4231	S/N 2292439

The instrument was calibrated in the field. We performed testing using the "rectangular prism" moving microphone method. Intensity and power data were computed by the Larson-Davis built-in intensity module. Temperature was estimated at about 25°C; barometric pressure was measured to be about 1005mbar. Background noise levels were modest and consistent. In the majority of 1/3 octave bands, the ambient condition (ex power supply and transformer) was 10dB or more below the test (forced) condition. In the lowest 1/3 octave bands of 50~80Hz and in the 250Hz and 400Hz bands, background levels were 3~8dB below the minimum-observed forced condition. No significant transients occurred during testing; however, irrelevant noise due to the DC power supply simulator changed somewhat with the different test configurations.

We measured the inverter under three input voltage conditions: 305V, 345V, and 408V. In all cases, the inverter was loaded to 100% at the given voltage. Our understanding is that the 408V@100% condition is the highest-load condition.

Xantrex requested data across the frequency spectrum from the 63Hz octave band through the 6.3kHz. It was anticipated that significant sound power would be present in the 6.3kHz band due to the internal electronics switching frequency within that band. We therefore performed the measurement twice for each voltage condition: the first (low-frequency) measurement was performed using the 100mm spacer between the probe microphones, while the second (high-frequency) measurement was performed using the 25mm spacer.

Data Reporting

Data were collected in 1/3 octave bands. We overlapped the data, taking our 50~200Hz data from the "long spacer" measurement and the 800Hz~10kHz data from the "short-spacer" measurement. Data from 250~630Hz were taken as the average of the "long-spacer" and "short-spacer" data sets. Data in the overlap regime of 250~630Hz differed by 1dB or less in each 1/3 octave band. To quantify directionality, we also present average sound pressure level data taken along the front, back, sides, and top of the unit.

We considered the good agreement in the 250~630Hz bands to be indicative of good data. In addition, the consistency of reported PWL (despite changing SPLs due to more-or-less noise being generated by the power supply and transformer) also give us confidence in the results.

The results are presented in Tables $1 \sim 4$ in terms of sound power levels, PWL, in decibels referenced to 1×10^{-12} W and sound pressure levels, SPL, in decibels referenced to 20μ Pa. All figures are unweighted.

Discussion

From test condition to test condition, the data indicate very stable noise performance at most frequencies. This is consistent with our qualitative observation that cooling fan noise dominates in most frequency bands. As illustrated in Table 1, the reported sound power level is the same (to within 1dB) from 50Hz through the 3.15kHz band.

High frequency noise becomes considerably more apparent at higher input voltages. As the system voltage increases to 408V, a tone emerges in the 6.3kHz band. Xantrex staff speculate that this is due to the switching frequency of the internal DC-to-AC electronics.

The directionality in the noise generation appears to be modest. Fan noise is most prominent at the rear of the unit, at the intake for the cooling fans. Over the entire spectrum, SPLs measured at the rear of the unit were typically 3~5dB higher than at the front of the unit. This includes not only the broadband fan noise but the high-frequency switching noise, as well.

From the perspective of sound propagation modeling, we would consider modeling the unit as a box with one rear noise source at an elevation of about 42" (the elevation of the opening in the intake shroud) and a front noise source at an elevation of about 80" (the elevation of the opening along the top front of the unit for exhaust.

• •

Please feel free to call if you have any questions; we may be reached in our San Francisco office by telephone at (+1) 415-693-0424 or via email at <u>byron@va-consult.com</u>.

Sincerely,

125

J. Byron Davis Vibro-Acoustic Consultants

Figure 1: Xantrex GT500 Sound Power Measurements – July 2009 Photograph of test unit and surrounding area; the front of the unit is to the right

VIBRO-ACOUSTIC CONSULTANTS • 490 POST STREET, SUITE 1427 • SAN FRANCISCO, CA • 94102 • USA PHONE: (+1) 415-693-0424 • FAX: (+1) 415-693-1398 • INTERNET: http://www.va-consult.com

Figure 2: Xantrex GT500 Sound Power Measurements – July 2009 Schematic diagram of GT500 Inverter case outline, with dimensions indicated

VIBRO-ACOUSTIC CONSULTANTS * 490 POST STREET, SUITE 1427 * SAN FRANCISCO, CA * 94102 * USA PHONE: (+1) 415-693-0424 * FAX: (+1) 415-693-1398 * INTERNET: http://www.va-consult.com

Table 1: Xantrex GT500 Sound Power Measurements - Overall Sound Power Level Data, PWL in dB re: 1×10⁻¹²W

1/3 octave band frequency>	50	63	80	100	125	160	200	250	315	400	500	630	800	1k	1.25k	1.6k	2k	2.5k	3.15k	4k	5k	6.3k	8k	10k
Total PWL, 305V, 100% Load	69	77	71	73	84	78	79	80	83	80	77	75	82	74	72	73	72	71	68	65	64	72	56	50
Total PWL, 345V, 100% Load	68	77	71	74	83	78	79	81	82	80	77	75	82	73	72	73	73	71	68	66	66	78	60	48
Total PWL, 480V, 100% Load	69	77	72	74	85	79	79	81	83	80	77	75	82	74	72	74	73	71	68	67	69	85	66	47

Table 2: Xantrex GT500 Sound Power Measurements - 305V/100% Load PWL in dB re: 1×10⁻¹²W and SPL in dB re: 20µPa

1/3 octave band frequency>	50	63	80	100	125	160	200	250	315	400	500	630	800	1k	1.25k	1.6k	2k	2.5k	3.15k	4k	5k	6.3k	8k	10k
Total PWL, 305V, 100% Load	69	77	71	73	84	78	79	80	83	80	77	75	82	74	72	73	72	71	68	65	64	72	56	50
		12.00			1	1.0			11.91		15.11			_										1 ·····
Average SPL, Front, 1.2m setback	52	62	55	57	71	63	65	67	68	66	62	62	66	58	57	56	55	55	53	51	52	63	50	39
Average SPL, Rear, 1.2m setback	59	65	59	61	73	66	67	69	71	67	66	65	68	63	61	63	62	61	60	57	56	66	54	46
Average SPL, Left, 1.2m setback	56	64	56	57	71	61	61	64	66	64	62	61	65	59	58	58	58	56	54	52	52	61	48	38
Average SPL, Right, 1.2m setback	56	64	56	57	73	61	63	66	68	65	63	62	66	60	59	59	59	58	56	54	53	62	50	41
Average SPL, Top, 1.2m setback	54	62	56	58	69	61	62	66	69	65	64	63	67	60	59	59	59	58	55	53	53	62	49	40
						1.00	105					1.2.4.7		1000			1	1.1	Sec. 11	1000				
Average SPL, Front, 2.0m setback	53	61	56	59	69	62	64	66	68	65	61	61	64	58	57	56	56	55	54	52	53	63	53	44
Average SPL, Rear, 2.0m setback	60	64	60	64	75	67	67	68	69	67	64	64	68	62	59	61	61	60	59	57	57	67	58	49
Average SPL, Left, 2.0m setback	55	62	56	59	71	61	61	64	64	61	59	59	63	57	56	56	56	55	53	52	51	60	50	41
Average SPL, Right, 2.0m setback	56	62	55	60	70	60	62	64	67	63	62	63	65	60	59	59	58	57	56	54	53	61	52	44

Table 3: Xantrex GT500 Sound Power Measurements - 345V/100% Load PWL in dB re: 1×10⁻¹²W and SPL in dB re: 20µPa

1/3 octave band frequency>	50	63	80	100	125	160	200	250	315	400	500	630	800	1k	1.25k	1.6k	2k	2.5k	3.15k	4k	5k	6.3k	8k	10k
Total PWL, 345V, 100% Load	68	77	71	74	83	78	79	81	82	80	77	75	82	73	72	73	73	71	68	66	66	78	60	48
	1.5				1.000				1.1	1.0	a		1.1		1			11.11						
Average SPL, Front, 1.2m setback	53	63	56	57	69	63	65	67	68	65	62	61	67	59	58	57	57	56	55	54	54	68	51	45
Average SPL, Rear, 1.2m setback	60	65	60	61	71	66	67	69	70	67	65	63	69	63	61	63	63	61	59	58	58	71	55	47
Average SPL, Left, 1.2m setback	56	64	56	58	69	61	61	64	65	63	61	60	66	59	58	58	58	57	55	54	53	66	50	41
Average SPL, Right, 1.2m setback	56	64	56	57	70	61	62	66	67	64	62	61	67	60	59	59	59	58	57	55	55	67	53	47
Average SPL, Top, 1.2m setback	54	62	56	59	67	62	62	67	68	65	63	62	68	60	59	59	59	58	56	54	54	67	51	43

Table 4: Xantrex GT500 Sound Power Measurements -408V/100% Load PWL in dB re: 1×10⁻¹²W and SPL in dB re: 20µPa

1/3 octave band frequency>	50	63	80	100	125	160	200	250	315	400	500	630	800	1k	1.25k	1.6k	2k	2.5k	3.15k	4k	5k	6.3k	8k	10k
Total PWL, 480V, 100% Load	69	77	72	74	85	79	79	81	83	80	77	75	82	74	72	74	73	71	68	67	69	85	66	47
		_		1	11.1	1						-												·
Average SPL, Front, 1.2m setback	54	63	56	57	71	63	65	67	68	65	63	63	67	60	59	59	58	57	56	56	59	77	58	47
Average SPL, Rear, 1.2m setback	60	66	60	62	73	67	67	69	72	67	65	66	69	63	62	64	63	62	60	60	62	80	64	51
Average SPL, Left, 1.2m setback	56	62	56	57	71	61	61	64	65	63	62	62	66	59	58	59	58	57	55	55	57	74	57	44
Average SPL, Right, 1.2m setback	56	63	56	57	72	61	63	67	68	65	63	65	67	61	59	60	60	60	59	58	59	75	59	49
Average SPL, Top, 1.2m setback	55	61	57	59	68	62	62	67	69	65	64	65	68	62	60	60	60	59	57	56	58	75	59	46
	1	s				1.1	100	1	i 1.					n	1.7	1		1.1.1.1.1.1	1					
Average SPL, Rear, 2.0m setback	60	63	60	63	73	66	67	68	69	66	65	65	69	63	61	62	61	60	59	60	63	79	68	56

AIRFLOW DATA

For a 4 Foot by 4 Foot Unit. Tested with mill finish and no screen.

- Free area = 3.68 ft^2
- $\blacktriangleright \quad \text{Percent free area} = 23.0\%$
- Free area velocity at point of beginning water penetration (@0.01 oz./ft² = 942 FPM (4.79 m/s)
- Maximum recommended air intake velocity = 742 FPM (3.77 m/s) Air volume @ 742 FPM free area velocity = 2731 CFM (1.29 m³/s) Pressure drop @ 742 FPM intake velocity = 0.05 in. H₂O (12.4 Pa)
- Maximum recommended air exhaust velocity = 1750 FPM (8.89 m/s) Air volume @ 1750 FPM free area velocity = 6440 CFM (3.04 m³/s) Pressure drop @ 1750 FPM exhaust velocity = 0.37 in. H₂O (91.9 Pa)

SUGGESTED SPECIFICATIONS:

GENERAL: Furnish and install where indicated on the drawings C/S 8" (203.2 mm) STANDARD FIXED ACOUSTICAL LOUVER **MODEL A-8370** as manufactured by Construction Specialties, Inc. Cranford, New Jersey and Mississauga, Ontario. Complete details shall be submitted to the architect for approval prior to fabrication. Supplier must be a member of AMCA or BSRIA

MATERIAL: Fixed blades and frame to be formed from 1100 series aluminum alloy. Interior acoustical material to be fiberglass insulation protected by a woven fire retardant (self-extinguishing) 100% polyester sheeting Material thickness shall be as follows: Heads, sills, jambs, mullion, and fixed blades to be: 0.081" (2.06 mm). All fasteners to be non-corrosive. All louvers to be furnished with 5/8" (15.87 mm) flattened expanded mesh, aluminum bird screen with a .055" (1.4 mm) thick extruded aluminum frame. Screens and screen frames to be standard mill finish.

STRUCTURAL DESIGN: Structural supports shall be designed and furnished by the louver manufacturer to carry a wind load of not less than______ psf (Pascals). (Note: If this paragraph is omitted or if the design wind load is not specified, the louvers will be manufactured in self-supporting units up to a maximum of 5' (1524 mm) wide by 8' (2438 mm) high. Any additional structural supports required to adequately secure these units within the opening shall be the responsibility of others.)

TEST DATA: The louver manufacturer shall submit test data from an accredited acoustical laboratory in accordance with ASTM Standard E90-90. The minimum acceptable performance through all octave bands is as follows: STC = 15

Frequency (hz):	63	125	250	500	1000	2000	4000	8000
Transmission Loss:	9	7	7	11	18	19	14	13
Noise Reduction:	15	13	13	17	24	25	20	19

FINISH: All louvers shall be finished with C/S Powder Coat, a coating to be 1.5 to 3 mil. thick full strength <u>100% resin Fluoropolymer coating</u>. Finish to allow zero VOCs to be emitted into facility of application. Finish to adhere to a 4H Hardness rating. All finishing procedures shall be one continuous operation in the plant of the manufacturer. The coating shall meet or exceed all requirements of AAMA specification <u>2605-5</u> "Voluntary Specification for High Performance Organic Coatings on Architectural extrusions and Panels." The louver manufacturer shall supply an industry standard <u>20-vear limited warranty against failure or excessive fading</u> of the Fluoropolymer Powder Coat finish. This limited warranty shall begin on the date of material shipment.

To download details and specifications visit www.c-sgroup.com. For technical and design assistance call 800-631-7379

PERFORMANCE DATA MODEL A8370

Width in Inches and Meters

	12	18	24	30	36	42	48	54	60
	0.30	0.46	0.61	0.76	0.91	1.07	1.22	1.37	1.52
18	0.17	0.29	0.42	0.54	0.67	0.79	0.92	1.05	1.17
0.46	0.02	0.03	0.04	0.05	0.06	0.07	0.09	0.10	0.11
24	0.33	0.59	0.84	1.09	1.34	1.59	1.84	2.09	2.34
0.61	0.03	0.05	0.08	0.10	0.12	0.15	0.17	0.19	0.22
30	0.33	0.59	0.84	1.09	1.34	1.59	1.84	2.09	2.34
0.76	0.03	0.05	0.08	0.10	0.12	0.15	0.17	0.19	0.22
36	0.50	0.88	1.25	1.63	2.01	2.38	2.76	3.14	3.51
0.91	0.05	0.08	0.12	0.15	0.19	0.22	0.26	0.29	0.33
42	0.67	1.17	1.67	2.17	2.68	3.18	3.68	4.18	4.68
1.07	0.06	0.11	0.16	0.20	0.25	0.30	0.34	0.39	0.43
48	0.67	1.17	1.67	2.17	2.68	3.18	3.68	4.18	4.68
1.22	0.06	0.11	0.16	0.20	0.25	0.30	0.34	0.39	0.43
54	0.84	1.46	2.09	2.72	3.34	3.97	4.60	5.23	5.85
1.37	0.08	0.14	0.19	0.25	0.31	0.37	0.43	0.49	0.54
60	1.00	1.76	2.51	3.26	4.01	4.77	5.52	6.27	7.02
1.52	0.09	0.16	0.23	0.30	0.37	0.44	0.51	0.58	0.65
66	1.17	2.05	2.93	3.80	4.68	5.56	6.44	7.32	8.19
1.68	0.11	0.19	0.27	0.35	0.43	0.52	0.60	0.68	0.76
72	1.17	2.05	2.93	3.80	4.68	5.56	6.44	7.32	8.19
1.83	0.11	0.19	0.27	0.35	0.43	0.52	0.60	0.68	0.76
78	1.34	2.34	3.34	4.35	5.35	6.35	7.36	8.36	9.36
1.98	0.12	0.22	0.31	0.40	0.50	0.59	0.68	0.78	0.87
84	1.51	2.63	3.76	4.89	6.02	7.15	8.28	9.41	10.54
2.13	0.14	0.24	0.35	0.45	0.56	0.66	0.77	0.87	0.98
90	1.51	2.63	3.76	4.89	6.02	7.15	8.28	9.41	10.54
2.29	0.14	0.24	0.35	0.45	0.56	0.66	0.77	0.87	0.98
96	1.67	2.93	4.18	5.43	6.69	7.94	9.20	10.45	11.71
2.44	0.16	0.27	0.39	0.50	0.62	0.74	0.85	0.97	1.09
102	1.84	3.22	4.60	5.98	7.36	8.74	10.12	11.50	12.88
2.59	0.17	0.30	0.43	0.56	0.68	0.81	0.94	1.07	1.20
108	2.01	3.51	5.02	6.52	8.03	9.53	11.04	12.52	14.05
2.74	0.19	0.33	0.47	0.61	0.75	0.89	1.03	1.16	1.31
114	2.01	3.51	5.02	6.52	8.03	9.53	11.04	12.52	14.05
2.90	0.19	0.33	0.47	0.61	0.75	0.89	1.03	1.16	1.31
120	2.17	3.80	5.43	7.07	8.70	10.33	11.96	13.59	15.22
3.05	0.20	0.35	0.50	0.66	0.81	0.96	1.11	1.26	1.41
126	2.34	4.10	5.85	7.61	9.36	11.12	12.88	14.63	16.39
3.20	0.22	0.38	0.54	0.71	0.87	1.03	1.20	1.36	1.52
132	2.34	4.10	5.85	7.61	9.36	11.12	12.88	14.63	16.39
3.35	0.22	0.38	0.54	0.71	0.87	1.03	1.20	1.36	1.52
138	2.51	4.39	6.27	8.15	10.03	11.91	13.80	15.68	17.56
3.51	0.23	0.41	0.58	0.76	0.93	1.11	1.28	1.46	1.63
144	2.68	4.68	6.69	8.70	10.70	12.71	14.72	16.72	18.73
3.66	0.25	0.43	0.62	0.81	0.99	1.18	1.37	1.55	1.74
150	2.68	4.68	6.69	8.70	10.70	12.71	14.72	16.72	18.73
3.81	0.25	0.43	0.62	0.81	0.99	1.18	1.37	1.55	1.74
156	2.84	4.97	7.11	9.24	11.37	13.50	15.64	17.77	19.90
3.96	0.26	0.46	0.66	0.86	1.06	1.25	1.45	1.65	1.85
162	3.01	5.27	7.53	9.78	12.04	14.30	16.56	18.81	21.07
4.11	0.28	0.49	0.70	0.91	1.12	1.33	1.54	1.75	1.96
168	3.18	5.56	7.94	10.33	12.71	15.09	17.47	19.86	22.24
4.27	0.30	0.52	0.74	0.96	1.18	1.40	1.62	1.85	2.07
174	3.18	5.56	7.94	10.33	12.71	15.09	17.47	19.86	22.24
4.42	0.30	0.52	0.74	0.96	1.18	1.40	1.62	1.85	2.07
180	3.34	5.85	8.36	10.87	13.38	15.89	18.39	20.90	23.41
4.57	0.31	0.54	0.78	1.01	1.24	1.48	1.71	1.94	2.17
186	3.51	6.15	8.78	11.41	14.05	16.68	19.31	21.95	24.58
4.72	0.33	0.57	0.82	1.06	1.31	1.55	1.79	2.04	2.28
192	3.51	6.15	8.78	11.41	14.05	16.68	19.31	21.95	24.58
4.88	0.33	0.57	0.82	1.06	1.31	1.55	1.79	2.04	2.28

IN INCHES AND MILLIMETERS OF WATER

STATIC PRESSURE DROP

Upper Numerals English Units/Lower Numerals Metric Units

Water Penetration Statement

AMCA defines the point of beginning water penetration as the free area velocity at which the AMCA water test has yielded 0.01 or less ounces of water per square foot of louver free area during a 15-minute test period.

Tests on non-drainable louvers have shown that the point of beginning water penetration for 4 and 6 inch deep louvers usually occurs at between 600 and 800 FPM free area velocity. In addition, the total amounts of water penetration for non-drainable louvers significantly higher in comparison to drainable louvers when intake velocities exceed the 600 to 800 FPM range.

Because of these characteristics, C/S recommends that drainable blade louvers be used for air intake applications whenever water entrainment must be minimized. In addition, we suggest that nondrainable louver air intake velocities be held to 600 FPM through the free area. This will help to limit significant water penetration during times of average rain conditions.

AIR VELOCITY IN FEET AND METERS PER MINUTE THROUGH FREE AREA

For a 48" X 48" sized louver

Construction Specialties, Inc. Manufacturing & Sales Location www.c-sgroup.com

Cranford, New Jersey 49 Meeker Avenue 07016 Telephone: (800) 631-7379 Fax: (908) 272-2920

Mississauga, Ontario 895 Lakefront Promenade L5E 2C2 Telephone: (888) 895-8955 Fax: (905) 274-6241

A member of the C/S Group of Companies For assistance with overseas requirements, call C/S International (908) 236-0800

©Copyright 2010. Construction Specialties, Inc., reserves the right to make design changes or to withdraw any design without notice.

Printed Date: 6/3/2010 Job: DEEPWELL - GT500MV Product Type: Fan Mark: EF-1

Model: CWB-101-4

Belt Drive Centrifugal Sidewall Exhaust Fan **Standard Construction Features**:

- Aluminum housing - Backward inclined aluminum wheel - Birdscreen mounted to the discharge perimeter - Removable mounting plate - Ball bearing motors - Motor and drives isolated on shock mounts - Adjustable motor pulley - Adjustable motor plate - Fan shaft mounted in ball bearing pillow blocks - Bearing meet or exceed temperature rating of fan - Static free belts - Corrosion resistant fasteners

Options & Accessories:

UL/cUL 705 Listed - "Power Ventilators" Switch, Nema-1, Toggle, Junction Box Mounted and Wired Damper, WD-323-PB-12X12, Gravity Actuated (Shipped Loose) Birdscreen, Galvanized

Dimensional

Qty	Weight w/o	Weight with	Wall	Optional
	Accessories	Accessories	Opening	Damper
	(Ib)	(Ib)	(in)	(in)
1	61	69	12.5 x 12.5	12 x 12

Performance

Requested Volume (CFM)	Actual Volume (CFM)	Requested SP (in wg)	Actual SP (in wg)	Fan RPM	Operating Power (hp)	Elevation (ft)	Airstream Temperature (F)
1,200	1,200	0.25	0.25	1,544	0.19	777	70

Motor

1110101							ooundi	0	/	00		Dun	CA .					
Motor	Size	V/C/P	Encl.	Motor	Windings	NEC FLA*	Sound Data	62.5	125	250	500	1000	2000	4000	8000	LwA	dBA	Sones
wounted	(ייף)					(Amps)	Inlet	73	72	78	69	63	66	58	52	73	62	11.2
Yes	1/4	208/60/1	ODP	1725	1	3.2			n									

Sound Power by Octave Band

Notes:

All dimensions shown are in units of in. *FLA - based on tables 150 or 148 of National Electrical Code 2002. Actual motor FLA may vary, for sizing thermal overload, consult factory. LwA - A weighted sound power level, based on ANSI S1.4

LwA - A weighted sound power level, based on ANSI \$1.4 dBA - A weighed sound pressure level, based on 11.5 dB attenuation per Octave band at 5.0 ft - dBA levels are not licensed by AMCA International Sones - calculated using AMCA 301 at 5.0 ft

TECHNICAL SPECS

 Date:
 1/17/2020

 Quotation Number:
 95927501

 Item Number:
 10

Customer Line No.:	Cornwall Algonquin	Quantity:	10
Three Phase Pad Mour	♥ t Transformar(s)	Extended Trice.	
LVA Pating.	1000 kVA	Model #:	
KVA Kaung.	Mineral Oil Immersed	Cooling Class	ONAN
	Wineral On minersed	Frequency:	60 Hz
		Avg. Winding Tomp	65 °C
Duimoury Voltagos	24500 Dalta valta	Avg. whung remp.	0.5 C Dual Input 209V/120 valta
Primary Voltage:	150 LV	Secondary PIL Dating	$\frac{1}{20} \frac{1}{120} \frac{1}{$
HV Winding Moth	150 KV	Secondary DIL Rating:	50 KV Connor
H v Willung Mati:	D Tang Two 2 5% Tang balow Noming	L v Williams Watt:	Nominal
No Lood Loss: 14	35 Watts Load Loss	8106 Watts	Total Loss 05/1 Watts
INO LOAU LOSS: 14	50 Walls Load Loss:	8100 watts	Total Loss: 9341 Watts
Timpedance:	5 70		
Wolded Cover w/(1) Her	dhala(s) = 14x24		
Stainlage Steel Exterior L	Jardwara		
Cabinet Depth: 20 Inches	Dontohood Socurity Polts		
Steel HV I V Barrier	, remaneau security bons		
Bushings:			
Loop Feed ANSI Minim	um Dimensions		
Dead Front Primary Terr	un Dimensions ninations: Integral Non Loadbreak Rushin	$a_{\rm S} 600 \text{Amn}$	
Secondary Terminations:	Enory Rushings w/Non removable 6 & 1	2 hole. Spade Support	
Protoction:	Epoxy Bushings w/Non-removable 0 & 1	2 noie, spade Support	
PRCLF (38kV - 65A Hil	Fech), Weak Link Cartridge (Curve #7 AB	B)	
Accessories:			
Pressure Relief Valve Vi	at, Cover-Mounted Pressure Relief Device	(), Drain valve w/Sampler	
Liquid Level Gauge, Liq	uid Temperature Gauge, Pressure Vacuum	Gauge	
		-	
4-Winding Double Tier S	SOLARPAD: Stadium Style Stacked Core	Construction with Semi-Rou	nd Windings, Reduced Flux
Density, Electrostatic Wi	nding Shields, Increased Cooling, Door Ga	asketing, Hold down anchorin	ng (x4 holes), Isolated Core
Ground, Nitrogen Blanke	et, Schrader Valve, UL Listed		
-Drain Valve & Sampler	in external lockable box		
-Gauges and MV switch	in external lockable enclosures		
-Losses are at 20C core a	nd 85C winding and are for reference. AN	SI tolerances will apply to qu	uoted losses.
Switching:			
L.V. Neutral Bushing wi	th Removable Grounding Strap, One ON/C	OFF Transformer Switch (300	0 Amps)
Paint Color:			
GREEN (Munsell 7.0GY	(3.29/1.5), Touch-up Paint Spray Can,		
Standards:			
Quoted in compliance wi	th the latest applicable ANSI standards un	less otherwise specified by th	e customer.

Hi-Tech[®] FACT

Distribution Transformer Configuration	Recommendations
Phase 3 Phase kVA 1000 kV 34.5 Transformer Rated 16.7 A Current: Bolted Secondary Fault 334.7 A	Voltage: 38 kV Current: 65 A Hi-Tech Fuse Part#: HTSS372065 Maximum I ² T: 12,100Amp ² -Sec Min IC: 390A Max IC: 50kA Expulsion Fuse: Curve #7
Current: Minimum Imp % 5 Primary Connection DELTA Secondary Connection gndY Preferred Expulsion Fuse ABB Weak Link	 The expulsion fuses selected is based on expulsion fuse manufacturer recommendations ABB Transformer Components

1000kVA / 34.5kV Delta/Gnd-Y Transformer (Imp >= 5%)

Product/Design Testing:

WEG performs the routine tests as defined in the current IEEE standards C57.12.00 and C57.12.90, which include:

- Winding resistance measurements (Section 5): Of all windings on the rated voltage tap and at the tap extremes. Acceptance Criteria: Total Loss within tolerance.
- **Ratio test and phase relation (Section 6, 7):** On the rated voltage connection and on all tap connections. Acceptance Criteria: ±0.5% of Calculated Ratio.
- **No-load and excitation current (Section 8):** At 100% and 110% voltage and at rated frequency. Acceptance Criteria: +10% of Guaranteed NLL.
- Impedance voltage and load loss (Section 9): At rated current and frequency on the rated voltage connection and at the tap extremes. Acceptance Criteria: +6% of Guaranteed Total Losses ±7.5 of guaranteed %IZ.
- Low Frequency Test
 - Applied Voltage (Section 10.6): On rated voltage connection of primary and secondary windings. HV & LV Winding Test Voltage. Acceptance Criteria: See IEEE C57.12.90
 - Induced Voltage (Section 10.7) Class I Power Transformer Test: On the rated voltage connection of primary & secondary windings. AC Level: 2 times rated voltage for 7200 cycles. Acceptance Criteria: See IEEE C57.12.90
- Lightning Impulse Test (Section 10.4): Quality Control test. One reduced wave followed by one full wave on HV phase terminals only. Chopped wave and switching impulse are not included. Acceptance Criteria: See IEEE C57.12.90
- Auxiliary Wiring Dielectric Test: Dielectric megger of 1000VDC to ground. Acceptance Criteria: See IEEE C57.12.90
- **Bushing Current Transformers:** Dielectric megger of 2500VDC to ground. Check of polarity and ratio of bushing current transformers. Acceptance Criteria: ±0.5% of Calculated Ratio
- Standard Leak test of Fully Assembled Transformer (Section 8.2 of C57.12.00): 5 psig of dry air (oil at ambient temperature) for 24 hours. Acceptance Criteria: No leaks.
- **Mechanical inspection:** Conformance to specs, standards and drawings, Check of layout, dimensions, clearances, etc., Check of nameplate data, Functional test of all accessories and auxiliary devices.

This proposal is based upon standard factory testing. These tests are the routine tests as defined by IEEE C57.12.00. Certified test reports can be provided at no additional charge, if requested.

Sound Power Level Calculation for Schneider Electric G T500 MVX inverter

Third Vibro	octave, as p Acoustics (rovided by Consultants
Freq #	Freq (Hz)	Lw (dB)
1	25	,
2	31.5	· · · · · · ·
3	40	i
4	50	69.0
5	63	77.0
6	80	72.0
7	100	74.0
8	125	85.0
9	160	79.0
10	200	79.0
11	250	81.0
12	315	83.0
13	400	80.0
14	500	77.0
15	630	75.0
16	800	82.0
17	1000	74.0
18	1250	72.0
19	1600	74.0
20	2000	73.0
21	2500	71.0
22	3150	68.0
23	4000	67.0
24	5000	69.0
25	6300	85.0
26	8000	66.0
27	10000	47.0
1.1.1.1	Total Lw	92.2

Freq #	Freq (Hz)	Lw, 1 inverter (dB)	A- Weight (dB)	LwA, 1 inverter (dBA)	LwA, 2 inverters (dBA)	LwA, 3 inverters (dBA)	LwA, 4 inverters (dBA)
	31.5	1	-39.4				
5	63	78.7	-26.2	52.5	55.5	57.3	58.5
8	125	86.2	-16.1	70.1	73.2	74.9	76.2
11	250	86.1	-8.6	77.5	80.5	82.2	83.5
14	500	82.6	-3.2	79.4	82.4	84.2	85.4
17	1000	83.0	0.0	83.0	86.0	87.8	89.0
20	2000	77.6	1.2	78.8	81.8	83.6	84.8
23	4000	72.8	1.0	73.8	76.9	78.6	79.9
26	8000	85.1	-1.1	84.0	87.0	88.7	90.0
	Total	92.2		88.5	91.5	93.2	94.5

Calculation example for 8000 Hz:

$$10 \log \left(10^{\frac{850}{10}} + 10^{\frac{660}{10}} + 10^{\frac{470}{10}} \right) = 85.1 dB$$

$$85.1 - 1.1 = 84.0 dBA$$

$$10 \log \left(2*10^{\frac{840}{10}} \right) = 87.0 dBA$$

$$10 \log \left(3*10^{\frac{840}{10}} \right) = 88.7 dBA$$

$$10 \log \left(4*10^{\frac{840}{10}} \right) = 90.0 dBA$$

Calculating the cumulative noise impact from increasing number of inverters

Figure B.1 Schneider Electric GT500 MVX inverter Sound Power Calculation

Estimated Frequency Spectra for Transformers Substation Transformer - 10MVA - ONAF

From Handbook of Noise and Vibration Control (Crocker, 2007, page 1335-1336, Eq. 18 and Table 20) Values Highlighted in Green are Used in This Study

Transformer Details:			
Oil Immerse	d		
<i>10 MVA</i>			
ONAF Coolir	ng Class		
height	2.8	8 m	
width	3.5	3 m	
depth	3.7	4 m	
Average LpA	63.0	dBA	Based on guaranteed characteristic sound pressure level provided by ABB
Estimated surface area	41.9	m^2	Based on provided transformer dimensions from ABB

Correction factors are in dB

ĺ	Freq. (Hz)	31	63	125	250	500	1000	2000	4000	8000	Notes
I	C1	-11	-5	-3	-8	-8	-14	-19	-24	-31	Outdoors, indoors in mechanical room over 140 m ³
ĺ	C2	-11	-2	3	-2	-2	-11	-19	-24	-31	Indoors
	C3	-11	-2	3	2	2	-4	-9	-14	-21	Serious Noise Problems

Sound Power Level calculated as: Lw = (Average LpA) + 10*log(Estimated surface area) + C + 10

-				<u> </u>	1 /	0.		,			
	Freq. (Hz)	31	63	125	250	500	1000	2000	4000	8000	Combined [dB]
	C1 based [dB]	78.2	84.2	86.2	81.2	81.2	75.2	70.2	65.2	58.2	90.3
	C2 based [dB]	78.2	87.2	92.2	87.2	87.2	78.2	70.2	65.2	58.2	95.3
	C3 based [dB]	78.2	87.2	92.2	91.2	91.2	85.2	80.2	75.2	68.2	97.3

Resulting A-weighted sound power level

Freq. (Hz)	31	63	125	250	500	1000	2000	4000	8000	Combined [dBA]
dBA Reduction	-39.4	-26.2	-16.1	-8.6	-3.2	0	1.2	1	-1.1	
C1 based [dB]	38.8	58.0	70.1	72.6	78.0	75.2	71.4	66.2	57.1	81.6
C2 based [dB]	39	61	76	79	84	78	71	66	57	86.6
C3 based [dB]	39	61	76	83	88	85	81	76	67	91.4

Figure B.2 34.5-kV/44-kV/10-MVA Substation Transformer Sound Power Calculation

Values Highlighted in Green are Used in This Study

Transf	former Detai	ls:		
	Oil Immer	sed		
	1000 kVA			
	ONAN Cod	oling Class		
	height	79.00 in		2.01 m
	width	73.62 in		1.87 m
	depth	70 in		1.78 m
	Average LpA	58.0	dBA	Based on NEMA TR1-1993 (R2000), Table 0-2, immersed power transformers
Estimated	surface area	19.5	m^2	Based on provided transformer dimensions from WEG

Correction Factors (dB)

Freq. (Hz)	31	63	125	250	500	1000	2000	4000	8000	Notes
C1	-11	-5	-3	-8	-8	-14	-19	-24	-31	Outdoors, indoors in mechanical room over 140 m ³
C2	-11	-2	3	-2	-2	-11	-19	-24	-31	Indoors
C3	-11	-2	3	2	2	-4	-9	-14	-21	Serious Noise Problems

Sound Power Level: Lw = (Average LpA) + 10*log(Estimated Area) + C + 10 [From Crocker pg. 1335]

Freq. (Hz)	31	63	125	250	500	1000	2000	4000	8000	Combined [dB]
C1 based [dB]	69.9	75.9	77.9	72.9	72.9	66.9	61.9	56.9	49.9	81.9
C2 based [dB]	69.9	78.9	83.9	78.9	78.9	69.9	61.9	56.9	49.9	87.0
C3 based [dB]	69.9	78.9	83.9	82.9	82.9	76.9	71.9	66.9	59.9	89.0

Resulting A-weighted Sound Power Level

Freq. (Hz)	31	63	125	250	500	1000	2000	4000	8000	Combined [dBA]
dBA Reduction	-39.4	-26.2	-16.1	-8.6	-3.2	0	1.2	1	-1.1	
C1 based [dB]	30.5	49.7	61.8	64.3	69.7	66.9	63.1	57.9	48.8	73.3
C2 based [dB]	30	53	68	70	76	70	63	58	49	78.2
C3 based [dB]	30	53	68	74	80	77	73	68	59	83.1

Figure B.3 208-V/34.5-kV/1-MVA Cluster Transformer Sound Power Calculation

Appendix C Noise Maps from CadnaA, Coordinates of the

Noise Receptor Centers

Cornwall Solar Inc. - Cornwall Solar Project

Noise Assessment Study Report - H336742

1			UTM Co	ordinates
	ID	Description	NAD 83	, Zone 18
			Х	Y
	R001	Existing	524571.8	4994421.3
	R002	Existing	524610.4	4994423.7
	R003	Existing	524775.8	4994473.4
	R004	Existing	524833.7	4994504.3
	R005	Existing	524883.5	4994536.9
	R006	Existing	524915.1	4994542.3
	R007	Existing	524982.9	4994590.8
	R008	Existing	525040.2	4994530.3
	R009	Existing	525102.2	4994541.2
	R010	Existing	525131.7	4994624.5
	R011	Existing	525202.6	4994661.8
	R012	Existing	525221.8	4994790.7
	R013	Existing	524950.5	4995404.4
	R014	Existing	523307.7	4994686.4
	R015	Vacant	523491.1	4994768.6
	R016	Existing	523536.3	4994466.5
	R017	Existing	523532.2	4994410.6
	R018	Existing	523603.9	4994577.2
	R019	Existing	523608.0	4994369.7
	R020	Existing	523613.4	4994186.9
	R021	Vacant	523660.4	4993427.0
	R022	Vacant	523672.7	4994115.6
	R023	Vacant	523665.7	4995325.5
	R024	Existing	523692.7	4994475.5
	R025	Existing	523704.7	4994242.5
	R026	Existing	523789.7	4994283.5
	R027	Existing	523767.9	4994143.1
	R028	Existing	523855.1	4994183.3
	R029	Existing	523865.7	4994287.5
	R030	Existing	523897.7	4994105.1
	R031	Existing	523937.6	4994028.1
	R032	Existing	523950.7	4994223.5
	R033	Vacant	523977.8	4994296.2
	R034	Existing	524102.0	4994301.3
	R035	Vacant	524143.9	4993736.0
	R036	Vacant	524222.1	4993524.6

Table C.1	Coordinates of the Noise Recen	otor Centers
	coordinates of the holse heeep	con centers

ΗΔΤCΗ

Cornwall Solar Inc. - Cornwall Solar Project Noise Assessment Study Report - H336742

	Description	UTM Co NAD 83	ordinates	
	Description	X	Y	
R037	Existing	524319.2	4994299.8	
R038	Existing	524512.9	4994334.5	
R039	Existing	524544.2	4994411.6	
R040	Existing	524770.0	4994384.6	
R041	Existing	524844.3	4994403.5	
R042	Existing	524949.8	4994580.5	
R043	Existing	524952.6	4994449.8	
R045	Existing	524999.6	4994480.2	
R046	Existing	525087.7	4994572.5	
R047	Existing	525136.7	4994483.6	
R048	Existing	525175.4	4994412.5	
R049	Vacant	525211.3	4994338.5	
R050	Existing	525246.3	4994476.7	
R051	Vacant	525298.1	4994200.1	
R052	Vacant	525306.2	4994731.1	
R053	Existing	525326.5	4994328.9	
R054	Existing	523065.3	4993968.7	
R055	Existing	523146.0	4993986.0	
R056	Existing	523171.2	4993990.6	
R057	Existing	523186.3	4994291.5	
R059	Existing	523205.4	4994127.3	
R060	Existing	523228.9	4994330.1	
R061	Existing	523284.3	4994644.4	
R062	Existing	523311.6	4994077.0	
R063	Existing	523337.6	4993978.6	
R064	Existing	523408.2	4994002.4	
R065	Existing	523408.7	4994108.6	
R066	Existing	523444.7	4993917.6	
R067	Existing	523445.6	4994133.8	
R068	Existing	523464.7	4994025.6	
R069	Existing	523503.7	4994046.6	
R070	Existing	523509.7	4994186.6	
R071	Existing	523531.6	4994057.8	
R072	Vacant	523592.5	4994077.8	
R073	Existing	524709.1	4994437.8	
R074	Existing	523628.2	4994234.7	
R075	Vacant	523176.0	4996026.1	

ΗΔΤCΗ

Cornwall Solar Inc. - Cornwall Solar Project Noise Assessment Study Report - H336742

Noise A.			
	Description	UTM Coordinates	
ID		NAD 83, Zone 18	
		х	Y
R076	Existing	524716.9	4994355.6
R077	Vacant	523436.9	4996177.7
R078	Existing	524590.2	4994337.1
R079	Existing	525042.0	4994510.2
R080	Existing	522918.6	4995836.3
R081	Existing	524162.0	4993684.7
R082	Existing	523611.9	4994564.9
R083	Existing	523619.6	4996230.5
R084	Vacant	522806.9	4995752.8
R085	Existing	523336.6	4994679.0
R086	Existing	525279.6	4994479.6
R087	Vacant	523722.9	4996416.5
R088	Existing	525094.4	4994856.7

From: Tse, Enoch (ENE) [mailto:Enoch.Tse@ontario.ca]
Sent: Friday, October 26, 2012 2:11 PM
To: Steven Hitchinson
Cc: Sean Fairfield; Zangeneh, Mahdi (ENE); Boucher, Noel; Colella, Nick (ENE)
Subject: RE: Cornwall Solar Project layout changes

Steven,

As per discussed, if a dwelling is the owner of a particular solar facility, then that dwelling does not need to be considered as a Point of Reception (POR) for that particular solar facility. But it is considered as a POR for the other adjacent solar facilities.

Enoch Tse, P.Eng. Senior Noise Engineer Approval Services Unit - Team 1 Environmental Approvals Branch

Ministry of the Environment

Operations Division 2 St. Clair Avenue West, Floor 12A Toronto ON M4V 1L5 Tel: 416 212-4201 Fax: 416 314-8452 Toll Free: 1 800 461-6290 E-mail: <u>enoch.tse@ontario.ca</u>

From: Colella, Nick (ENE)
Sent: October 26, 2012 12:14 PM
To: Boucher, Noel
Cc: Sean Fairfield; Steven Hitchinson; Tse, Enoch (ENE); Zangeneh, Mahdi (ENE)
Subject: Cornwall Solar Project layout changes

Hi Noel,

This email is a follow up to our conversation yesterday and call earlier in the week. I understand that there are changes proposed for the Cornwall Solar Project, which require a revision of the Noise Report. With respect to the next steps regarding this project change, I will require the following:

- revised site plan
- revised noise report
- indication if, as a result of the project change, the overall impact at the receptors is (a) lower, (b) the same, (c) higher but insignificant, or (d) higher and significant (based on your determination)
- a description of whether the project changes will have any additional negative effects on the environment (e.g. additional impacts to water bodies, vegetation, noise, visuals etc.), outside of what has already been identified in the project documentation

Please note that the appropriate course of action regarding this project change will be determined based on our review of the information requested above. Generally speaking, this change will require submission of a Modification Document (I will advise on what should be included in this document). However, depending on our review of the requested information, we may also require you to provide notification of the project changes to the public, Aboriginal communities, and municipalities. Should it be determined that the overall noise/environmental impact is significant, we may require an additional public meeting.

Yesterday we spoke briefly about the issue where R42 was at 43dbA, without considering the Cornwall project (from my understanding, this is primarily because R42 was not assessed for the South Glengarry project). I have discussed this with the Noise Engineer for this file, Enoch Tse. Please contact Enoch with respect to this issue and he will provide guidance (contact info below).

Enoch Tse 416-212-4201 Enoch.Tse@ontario.ca

As always, please contact me if you have any questions.

Thanks Nick

Nick Colella Project Evaluator Environmental Approvals Branch Ministry of the Environment 2 St. Clair Ave. W., Floor 12A | Toronto, ON., M4V 1L5 | T: 416-212-3691 | F: 416-314-8452 | nick.colella@ontario.ca

Legend

• Cluster # • Noise Receptor - Existing

- Noise Receptor Vacant
- Point of Reception •
- —[#] Road
- Noise Receptor Footprint
- 30 m from Noise Receptor Footprint _
- Inverter Cluster +
- Substation Transformer 4
- South Glengarry St. Lawrence-1 Solar Farm Project Site _
- 30 m from Noise Receptor
- Project Site
- Parcel

Sound Pressure Level (dBA)

Notes:

Notes:
 Produced by Hatch under licence from Ontario Ministry of Natural Resources, Copyright (c) Queens Printer 2011.
 Spatial referencing UTM NAD 83.
 Imagery obtained from Google Earth Pro, 2007.

50 100 200 1:5,000

Figure C.2 Cornwall Solar Inc. Cornwall Solar Project HATCH Noise Contours at 1.5 m

Cornwall Solar Inc. - Cornwall Solar Project Noise Assessment Study Report - H336742

Appendix D Adjacent Facility Renewable Energy Approvals

RENEWABLE ENERGY APPROVAL

NUMBER 1565-8ULQT7 Issue Date: June 26, 2012

Northland Power Solar Glendale GP Inc. 30 St. Clair Ave W 17th Floor Toronto, Ontario M4V 3A1

Project18085 County Road 19Location:Township of South Glengarry, United Counties of
Stormont, Dundas and Glengarry
K6H 5R6

You have applied in accordance with Section 47.4 of the <u>Environmental Protection Act</u> for approval to engage in a renewable energy project in respect of a Class 3 solar facility consisting of the following:

- the construction, installation, operation, use and retiring of a Class 3 solar facility with a total name plate capacity of up to approximately 10 megawatts (AC)

For the purpose of this renewable energy approval, the following definitions apply:

- 1. "Acoustic Assessment Report" means the report included in the Application and entitled *Glendale Solar Project Noise Assessment Study Report*, dated January 27, 2012, prepared by HATCH and signed by Oleg Belashov P.Eng. on May 7, 2012;
- 2. "Acoustic Audit" means an investigative procedure consisting of measurements and/or acoustic modelling of all sources of noise emissions due to the operation of the Equipment, assessed to determine compliance with the Noise Performance Limits set out in this Approval;
- 3. "Acoustic Audit Report" means a report presenting the results of an Acoustic Audit;
- 4. "Acoustical Consultant" means a person currently active in the field of environmental acoustics and noise/vibration control, who is knowledgeable about Ministry noise guidelines and procedures and has a combination of formal university education, training and experience necessary to assess noise emissions from solar facilities;

- 5. "Act" means the *Environmental Protection Act*, R.S.O 1990, c.E.19, as amended;
- 6. "Adverse Effect" has the same meaning as in the Act;
- 7. "Application" means the application for a Renewable Energy Approval dated October 5, 2011 and signed by John Brace, President & CEO, Northland Power Solar Glendale GP Inc. and all supporting documentation submitted with the application, including amended documentation submitted up to the date this Approval is issued;
- 8. "Approval" means this Renewable Energy Approval issued in accordance with Section 47.4 of the Act, including any schedules to it;
- 9. "A-weighting" means the frequency weighting characteristic as specified in the International Electrotechnical Commission (IEC) Standard 61672, and intended to approximate the relative sensitivity of the normal human ear to different frequencies (pitches) of sound. It is denoted as "A";
- 10. "A-weighted Sound Pressure Level" means the Sound Pressure Level modified by application of an A-weighting network. It is measured in decibels, A-weighted, and denoted "dBA";
- 11. "Class 1 Area" means an area with an acoustical environment typical of a major population centre, where the background sound level is dominated by the activities of people, usually road traffic, often referred to as "urban hum";
- 12. "Class 2 Area" means an area with an acoustical environment that has qualities representative of both Class 1 and Class 3 Areas:
 - (a) sound levels characteristic of Class 1 during daytime (07:00 to 19:00 or to 23:00 hours);

(b) low evening and night background sound level defined by natural environment and infrequent human activity starting as early as 19:00 hours (19:00 or 23:00 to 07:00 hours);

- (c) no clearly audible sound from stationary sources other than from those under impact assessment.
- 13. "Class 3 Area" means a rural area with an acoustical environment that is dominated by natural sounds having little or no road traffic, such as the following:
 - (a) a small community with less than 1000 population;
 - (b) agricultural area;
 - (c) a rural recreational area such as a cottage or a resort area; or
 - (d) a wilderness area.

- 14. "Company" means Northland Power Solar Glendale GP Inc., as general partner for and on behalf of Northland Power Solar Glendale L.P., the partnership under the laws of Ontario, and includes its successors and assignees;
- 15. "Decibel" means a dimensionless measure of Sound Level or Sound Pressure Level, denoted as dB;
- 16. "Director" means a person appointed in writing by the Minister of the Environment pursuant to section 5 of the Act as a Director for the purposes of section 47.5 of the Act;
- 17. "District Manager" means the District Manager of the appropriate local district office of the Ministry where the Facility is geographically located;
- 18. "Equipment" means the two (2) 800 kilowatt (kW) inverters and one (1) 1.6 megavolt ampere (MVA) transformer within each array, and (1) transformer substation, identified in this Approval and as further described in the Application, to the extent approved by this Approval;
- 19. "Equivalent Sound Level" is the value of the constant sound level which would result in exposure to the same total A-weighted energy as would the specified time-varying sound, if the constant sound level persisted over an equal time interval. It is denoted L_{e_0} and is measured in dB A-weighting (dBA);
- 20. "Facility" means the renewable energy generation facility, including the Equipment, as described in this Approval and as further described in the Application, to the extent approved by this Approval;
- 21. "Independent Acoustical Consultant" means an Acoustical Consultant who is not representing the Company and was not involved in preparing the Acoustic Assessment Report. The Independent Acoustical Consultant shall not be retained by the Acoustical Consultant involved in the noise impact assessment;
- 22. "Ministry" means the ministry of the government of Ontario responsible for the Act and includes all officials, employees or other persons acting on its behalf;
- 23. "Noise Receptor" has the same meaning as in O. Reg. 359/09;
- 24. "O. Reg. 359/09" means Ontario Regulation 359/09 "Renewable Energy Approvals under Part V.0.1 of the Act" made under the Act;
- 25. "Point of Reception" has the same meaning as in Publication NPC-205 or Publication NPC-232, as applicable, and is subject to the same qualifications described in those documents;
- 26. "Publication NPC-103" means the Ministry Publication NPC-103, "Procedures", August 1978;
- "Publication NPC-104" means the Ministry Publication NPC-104, "Sound Level Adjustments", August 1978;

- 28. "Publication NPC-205" means the Ministry Publication NPC-205, "Sound Level Limits for Stationary Sources in Class 1 & 2 Areas (Urban)", October 1995;
- 29. "Publication NPC-232" means the Ministry Publication NPC-232, "Sound Level Limits for Stationary Sources in Class 3 Areas (Rural)", October 1995;
- 30. "Publication NPC-233" means the Ministry Publication NPC-233, "Information to be Submitted for Approval of Stationary Sources of Sound", October 1995;
- 31. "Sound Level" means the A-weighted Sound Pressure Level;
- 32. "Sound Level Limit" is the limiting value described in terms of the one hour A-weighted Equivalent Sound Level L_{a} ;
- 33. "Sound Power Level" is ten times the logarithm to the base of 10 of the ratio of the sound power (Watts) of a noise source to standard reference power of 10^{-12} Watts;
- 34. "Sound Pressure" means the instantaneous difference between the actual pressure and the average or barometric pressure at a given location. The unit of measurement is the micro pascal (μPa);
- 35. "Sound Pressure Level" means twenty times the logarithm to the base 10 of the ratio of the effective pressure (μ Pa) of a sound to the reference pressure of 20 μ Pa;
- 36. "UTM" means Universal Transverse Mercator coordinate system.

You are hereby notified that this approval is issued to you subject to the terms and conditions outlined below:

TERMS AND CONDITIONS

A - GENERAL

A1. The Company shall construct, install, use, operate, maintain and retire the Facility in accordance with the terms and conditions of this Approval and the Application and in accordance with the following schedules attached hereto:

Schedule A – Facility Description Schedule B – Coordinates of the Equipment and Noise Specifications

- A2. Where there is a conflict between a provision of this Approval and any document submitted by the Company, the conditions in this Approval shall take precedence. Where there is a conflict between one or more of the documents submitted by the Company, the document bearing the most recent date shall take precedence.
- A3. The Company shall ensure a copy of this Approval is:

- (1) accessible, at all times, by Company staff operating the Facility and;
- (2) submitted to the clerk of each local municipality and upper-tier municipality in which the Facility is situated.
- A4. If the Company has a publicly accessible website, the Company shall ensure that the Approval and the Application are posted on the Company's publicly accessible website within five (5) business days of receiving this Approval.
- A5. The Company shall, at least six (6) months prior to the anticipated retirement date of the entire Facility, or part of the Facility, review its Decommissioning Plan Report to ensure that it is still accurate. If the Company determines that the Facility cannot be decommissioned in accordance with the Decommissioning Plan Report, the Company shall provide the Director and District Manager a written description of plans for the decommissioning of the Facility.
- A6. The Facility shall be retired in accordance with the Decommissioning Plan Report and any directions provided by the Director or District Manager.
- A7. The Company shall provide the District Manager and the Director at least ten (10) days written notice of the following:
 - (1) the commencement of any construction or installation activities at the project location; and
 - (2) the commencement of the operation of the Facility.

B - EXPIRY OF APPROVAL

- B1. Construction and installation of the Facility must be completed within three (3) years of the later of:
 - (1) the date this Approval is issued; or
 - (2) if there is a hearing or other litigation in respect of the issuance of this Approval, the date that this hearing or litigation is disposed of, including all appeals.
- B2. This Approval ceases to apply in respect of any portion of the Facility not constructed or installed before the later of the dates identified in Condition B1.

C - NOISE PERFORMANCE LIMITS

- C1. The Company shall ensure that:
 - (a) the Sound Levels from the Equipment, at the Points of Reception identified in the Acoustic Assessment Report, comply with the Sound Level Limit of 40 dBA as described in Publication NPC-232, subject to adjustment for tonality as described in Publication NPC-104;

- (b) the Equipment is constructed and installed at either of the following locations:
 - (i) at the locations identified in Schedule B of this Approval; or
 - (ii) at a location that does not vary by more than 10 metres from the locations identified in Schedule B of this Approval and provided that,
 - 1) the Equipment will comply with Condition C1 (a), and
 - 2) all setback prohibitions established under O. Reg. 359/09 are complied with.
- (c) the Equipment complies with the noise specifications set out in Schedule B of this Approval; and
- C2. If the Company determines that some or all of the Equipment cannot be constructed in accordance with Condition C1 (b), prior to the construction and installation of the Equipment in question, the Company shall apply to the Director for an amendment to the terms and conditions of the Approval.
- C3. Within three (3) months of the completion of the construction of the Facility, the Company shall submit to the Director a written confirmation signed by an individual who has the authority to bind the Company that the UTM coordinates of the "as constructed" Equipment comply with the requirements of Condition C1 (b).

D - GROUNDWATER MONITORING

- D1. The Company shall implement the pre construction survey and groundwater monitoring program described in the June 4, 2012 "Baseline Well Water Monitoring Program and Construction Response Plan" included in the Application.
- D2. The Company shall implement the groundwater monitoring program described in Condition D1 for a minimum period of two (2) years after the start of construction of the Facility.
- D3. The Company shall report the summary of the results of the groundwater monitoring program on an annual basis to the District Manager.

E - STORMWATER MANAGEMENT

- E1. Prior to the construction and installation of the Facility, the Company shall:
 - (a) prepare a stormwater management plan which shall include best management practices for stormwater management during the construction, installation, use, operation, maintenance and retiring of the Facility;

- (b) prepare an erosion and sediment control plan which shall include methods to address surface water runoff and best management practices for sediment and erosion control during the construction, installation, use, operation, maintenance and retiring of the Facility;
- (c) provide the stormwater management plan and erosion and sediment control plan to the District Manager; and
- (d) implement the stormwater management plan and erosion and sediment control plan.

F - WATER TAKING ACTIVITIES

F1. The Company shall not take more than 50,000 litres of water on any day by any means during the construction, installation, use, operation, maintenance and retiring of the Facility.

G - SEWAGE WORKS

- G1. The Company shall, prior to the commercial operation date of the Facility, retain an independent Professional Engineer licensed in Ontario and familiar with electrical transformer substations and its associated sewage works to prepare a design report on the spill containment facility and, obtain approval (in the form of a letter) from the Director for a transformer substation spill containment area and associated sewage works that shall contain the following:
 - (1) final design drawings and specifications of the spill containment and associated sewage works;
 - (2) an operation and maintenance procedures manual including an emergency/contingency plan; and
 - (3) a monitoring program, including a groundwater monitoring program in the event of subsurface disposal system.
- G2. The Company shall design the sewage works in Condition G1 such that the concentration of the effluent parameter named in the table below does not exceed the maximum concentration objective shown for that parameter in the effluent, and shall comply with the following requirements:

Effluent Parameters	Maximum Concentration Objective
Oil and Grease	15mg/L

- (1) notify the District Manager, as soon as reasonably possible, of any exceedance of the maximum concentration objective set out in the table above;
- (2) take immediate action to identify the cause of the exceedance; and
- (3) take immediate action to prevent further exceedances.

H - TRAFFIC MANAGEMENT PLANNING

H1. Within three (3) months of receiving this Approval, the Company shall prepare a Traffic Management Plan and provide it to the Township of South Glengarry.

I - ARCHAEOLOGICAL RESOURCES

- I1. The Company shall implement all of the recommendations, if any, for further archaeological fieldwork and for the protection of archaeological sites found in the consultant archaeologist's report included in the Application, and which the Company submitted to the Ministry of Tourism, Culture and Sport in order to comply with clause 22 (2) (b) of O. Reg. 359/09.
- I2. Should any previously undocumented archaeological resources be discovered, the Company shall:
 - (1) cease all alteration of the area in which the resources were discovered immediately;
 - (2) engage a consultant archaeologist to carry out the archaeological fieldwork necessary to further assess the area and to either protect and avoid or excavate any sites in the area in accordance with the *Ontario Heritage Act*, the regulations under that act and the Ministry of Tourism, Culture and Sport's *Standards and Guidelines for Consultant Archaeologists*; and
 - (3) notify the Director as soon as reasonably possible

J - OPERATION AND MAINTENANCE

- J1. Prior to the commencement of the operation of the Facility, the Company shall prepare a written manual for use by Company staff outlining the operating procedures and a maintenance program for the Equipment that includes as a minimum the following:
 - (1) routine operating and maintenance procedures in accordance with good engineering practices and as recommended by the Equipment suppliers;
 - (2) emergency procedures;
 - (3) procedures for any record keeping activities relating to operation and maintenance of the Equipment; and
 - (4) all appropriate measures to minimize noise emissions from the Equipment.
- J2. The Company shall;
 - (1) update, as required, the manual described in Condition J1; and
 - (2) make the manual described in Condition J1 available for review by the Ministry upon request.

J3. The Company shall ensure that the Facility is operated and maintained in accordance with the Approval and the manual described in Condition J1.

K - RECORD CREATION AND RETENTION

- K1. The Company shall create written records consisting of the following:
 - (1) an operations log summarizing the operation and maintenance activities of the Facility;
 - (2) within the operations log, a summary of routine and Ministry inspections of the Facility; and
 - (3) a record of any complaint alleging an Adverse Effect caused by the construction, installation, use, operation, maintenance or retirement of the Facility.
- K2. A record described under Condition K1 (3) shall include:
 - (1) a description of the complaint that includes as a minimum the following:
 - (a) the date and time the complaint was made;
 - (b) the name, address and contact information of the person who submitted the complaint;
 - (2) a description of each incident to which the complaint relates that includes as a minimum the following:
 - (a) the date and time of each incident;
 - (b) the duration of each incident;
 - (c) the wind speed and wind direction at the time of each incident;
 - (d) the ID of the Equipment involved in each incident and its output at the time of each incident;
 - (e) the location of the person who submitted the complaint at the time of each incident; and
 - (3) a description of the measures taken to address the cause of each incident to which the complaint relates and to prevent a similar occurrence in the future.
- K3. The Company shall retain, for a minimum of five (5) years from the date of their creation, all records described in Condition K1, and make these records available for review by the Ministry upon request.

L - NOTIFICATION OF COMPLAINTS

- L1. The Company shall notify the District Manager of each complaint within two (2) business days of the receipt of the complaint.
- L2. The Company shall provide the District Manager with the written records created under Condition J2 within eight (8) business days of the receipt of the complaint.
- L3. If the Company receives a complaint related to groundwater, the Company shall contact the District Manager within one (1) business day of the receipt of the complaint to discuss appropriate measures to manage any potential groundwater issues.

M - CHANGE OF OWNERSHIP

- M1. The Company shall notify the Director in writing, and forward a copy of the notification to the District Manager, within thirty (30) days of the occurrence of any of the following changes:
 - (1) the ownership of the Facility;
 - (2) the operator of the Facility;
 - (3) the address of the Company;
 - (4) the partners, where the Company is or at any time becomes a partnership and a copy of the most recent declaration filed under the *Business Names Act*, R.S.O. 1990, c.B.17, as amended, shall be included in the notification; and
 - (5) the name of the corporation where the Company is or at any time becomes a corporation, other than a municipal corporation, and a copy of the most current information filed under the *Corporations Information Act*, R.S.O. 1990, c. C.39, as amended, shall be included in the notification.

SCHEDULE A

Facility Description

The Facility shall consist of the construction, installation, operation, use and retiring of the following:

- (a) seven (7) arrays of photovoltaic (PV) modules or panels with a total name plate capacity of up to approximately 10 megawatts (AC), with each array containing one (1) cluster consisting of two
 (2) 800 kilowatt (kW) inverters and one (1) 1.6 megavolt ampere (MVA) transformer;
- (b) one (1) 10 MVA (megavolt ampere) transformer substation; and
- (c) associated ancillary equipment, systems and technologies including on-site access roads, underground cabling and overhead distribution lines,

all in accordance with the Application.

SCHEDULE B

Coordinates of the Equipment and Noise Specifications

	Source ID	Sound Power Level (dBA)	Easting (m)	Northing (m)	Source Description
1	GL_Sub	85.8	522,294	4,993,696	44-kV/10-MVA substation transformer
2	GL_Inv1	86.3	521,955	4,994,431	Inverter Cluster 1: 1.6 MW
3	GL_Inv2	86.3	522,162	4,994,354	Inverter Cluster 2: 1.6 MW
4	GL_Inv3	86.3	522,100	4,994,199	Inverter Cluster 3: 1.6 MW
5	GL_Inv4	86.3	522,281	4,994,199	Inverter Cluster 4: 1.6 MW
6	GL_Inv5	86.3	522,390	4,994,010	Inverter Cluster 5: 1.6 MW
7	GL_Inv6	86.3	522,209	4,994,010	Inverter Cluster 6: 1.6 MW
8	GL_Inv7	86.3	522,498	4,993,829	Inverter Cluster 7: 1.6 MW
9	GL_Trans1	75.1	521,950	4,994,431	27.6 kV/1.6MVA transformer at Cluster 1
10	GL_Trans2	75.1	522,157	4,994,354	27.6 kV/1.6MVA transformer at Cluster 2
11	GL_Trans3	75.1	522,095	4,994,199	27.6 kV/1.6MVA transformer at Cluster 3
12	GL_Trans4	75.1	522,276	4,994,199	27.6 kV/1.6MVA transformer at Cluster 4
13	GL_Trans5	75.1	522,384	4,994,010	27.6 kV/1.6MVA transformer at Cluster 5
14	GL_Trans6	75.1	522,203	4,994,010	27.6 kV/1.6MVA transformer at Cluster 6
15	GL_Trans7	75.1	522,493	4,993,829	27.6 kV/1.6MVA transformer at Cluster 7

Coordinates of the Equipment are listed below in UTM, Z17-NAD83 projection:

Note: The inverter Sound Power Level values in the above table correspond to the combined output of all the inverters in each cluster, and include the 5 Decibel (dB) adjustment for tonality as prescribed in Publication NPC-104

The reasons for the imposition of these terms and conditions are as follows:

- 1. Condition A1 and A2 are included to ensure that the Facility is constructed, installed, used, operated, maintained and retired in the manner in which it was described for review and upon which Approval was granted. These conditions are also included to emphasize the precedence of conditions in the Approval and the practice that the Approval is based on the most current document, if several conflicting documents are submitted for review.
- 2. Condition A3 and A4 are included to require the Company to provide information to the public and the local municipality.
- 3. Condition A5 and A6 are included to ensure that final retirement of the Facility is completed in an aesthetically pleasing manner, in accordance with Ministry standards, and to ensure long-term protection of the health and safety of the public and the environment.
- 4. Condition A7 is included to require the Company to inform the Ministry of the commencement of activities related to the construction, installation and operation of the Facility.
- 5. Condition B is intended to limit the time period of the Approval.
- 6. Condition C1 is included to provide the minimum performance requirement considered necessary to prevent an Adverse Effect resulting from the operation of the Equipment and to ensure that the noise emissions from the Equipment will be in compliance with applicable limits set in Publication NPC-232.
- 7. Condition C2 and C3 are included to ensure that the Equipment is constructed, installed, used, operated, maintained and retired in a way that meets the regulatory setback prohibitions set out in O. Reg. 359/09.
- 8. Condition D, E, F, G and H are included to ensure that the Facility is constructed, installed, used, operated, maintained and retired in a way that does not result in an Adverse Effect or hazard to the natural environment or any persons.
- 9. Condition I is included to protect archaeological resources that may be found at the project location.
- 10. Condition J is included to emphasize that the Equipment must be maintained and operated according to a procedure that will result in compliance with the Act, O. Reg. 359/09 and this Approval.
- 11. Condition K is included to require the Company to keep records and provide information to the Ministry so that compliance with the Act, O. Reg. 359/09 and this Approval can be verified.
- 12. Condition L are included to ensure that any complaints regarding the construction, installation, use, operation, maintenance or retirement of the Facility are responded to in a timely and efficient manner.
- 13. Condition M is included to ensure that the Facility is operated under the corporate name which appears on the application form submitted for this Approval and to ensure that the Director is informed of any changes.

NOTICE REGARDING HEARINGS

In accordance with Section 139 of the <u>Environmental Protection Act</u>, within 15 days after the service of this notice, you may by further written notice served upon the Director, the Environmental Review Tribunal and the Environmental Commissioner, require a hearing by the Tribunal.

Section 142 of the <u>Environmental Protection Act</u> provides that the notice requiring the hearing shall state:

- 1. The portions of the renewable energy approval or each term or condition in the renewable energy approval in respect of which the hearing is required, and;
- 2. The grounds on which you intend to rely at the hearing in relation to <u>each</u> portion appealed.

The signed and dated notice requiring the hearing should also include:

- 3. The name of the appellant;
- 4. The address of the appellant;
- 5. The renewable energy approval number;
- 6. The date of the renewable energy approval;
- 7. The name of the Director;
- 8. The municipality or municipalities within which the project is to be engaged in;

This notice must be served upon:

The Secretary*		The Environmental Commissioner		The Director
Environmental Review Tribunal		1075 Bay Street, 6th Floor		Section 47.5, Environmental Protection Act
655 Bay Street, 15th Floor		Suite 605		Ministry of the Environment
Toronto, Ontario	AND	Toronto, Ontario	AND	2 St. Clair Avenue West, Floor 12A
M5G 1E5		M5S 2B1		Toronto, Ontario
				M4V 11.5

* Further information on the Environmental Review Tribunal's requirements for an appeal can be obtained directly from the Tribunal at: Tel: (416) 314-4600, Fax: (416) 314-4506 or www.ert.gov.on.ca

Under Section 142.1 of the <u>Environmental Protection Act</u>, residents of Ontario may require a hearing by the Environmental Review Tribunal within 15 days after the day on which notice of this decision is published in the Environmental Registry. By accessing the Environmental Registry at www.ebr.gov.on.ca, you can determine when this period ends.

Approval for the above noted renewable energy project is issued to you under Section 47.5 of the <u>Environmental Protection Act</u> subject to the terms and conditions outlined above.

DATED AT TORONTO this 26th day of June, 2012

for,

Vic Schroter, P.Eng. Director Section 47.5, *Environmental Protection Act*

DM/

c: District Manager, MOE Cornwall Sean Male, Hatch

AMENDMENT TO RENEWABLE ENERGY APPROVAL

NUMBER 2189-8NQPZ5 Issue Date: November 15, 2013

South Glengarry General Partner 1 Inc. and South Glengarry General Partner 2 Inc. operating as South Glengarry Solar Farm Partnership 620 Righters Ferry Rd Bala Cynwyd, Pennsylvania USA 19004

Site Location: 18423 County Road 19 and 18461 County Road 19 Lot 40, 41, 41a, Concession 5IL South Glengarry Township, United Counties of Stormont, Dundas and Glengarry K0C 2J0

You are hereby notified that I have amended Approval No. 2189-8NQPZ5 issued on December 19, 2011 for a Class 3 solar facility, as follows:

A. The description of the Class 3 solar facility on page 1 of the Approval is deleted and replaced with the following:

- The construction, installation, operation, use and retiring of a Class 3 solar facility with a total name plate capacity of up to 10 megawatts.
- B. The following definition of Acoustic Assessment Report is added to the definitions of the Approval:
- 1a. "Acoustic Assessment Report" means the report included in the Application and entitled "Acoustic Assessment Report - Penn Energy - S. Glengarry_ St. Lawrence-1 Solar Farm" dated May 10, 2013, prepared by Petr Chocensky and Ian Bonsma, Howe Gastmeier Chapnik Limited; and includes additional correspondence submitted up to October, 2013;

C. The definition of the Application on page 2 of the Approval is deleted and replaced with the following:

3. "Application" means the application for a Renewable Energy Approval dated July 5, 2011, and signed by Max Frable, Project Manager/ REA Coordinator, Penn Energy Renewables, Ltd., and all supporting documentation submitted with the application, including amended documentation submitted up to December 13, 2011; and as further amended by the application for a Renewable Energy Approval, dated May 18, 2012, and signed by Max Frable, Project Manager/REA Coordinator, Penn Energy Renewables, Ltd. and all supporting documentation submitted with the application, including amended documentation submitted up to July 10, 2012; and as further amended by the application dated June 7, 2013 and signed by Mr. Glen Tomkinson, Project Manager/REA Coordinator, South Glengarry General Partner 1 Inc. and South Glengarry General Partner 2 Inc., operating as South Glengarry Solar Farm Partnership, and all supporting documentation submitted with the application, including amended documentation submitted up to the date this amendment is issued;

D. Condition No. 8 on page 5 of the Approval is deleted and replaced with the following:

- 8. Construction and installation of the *Facility* must be completed within three (3) years of the later of:
 - (1) the date this *Approval* is issued; or
 - (2) if there is a hearing or other litigation in respect of the issuance of this *Approval*, the date that this hearing or litigation is disposed of, including all appeals.

SCHEDULE A

Noise Specifications and Coordinates of the Equipment in UTM, Z18-NAD83 projection:

Source		Maximum Sound Power Level	Height	UTM Co	ordinates
D	Source Description	[dBA]	[m]	Easting	Northing
NS-01	Inverter House MV1	88	1.5	524587	499 <mark>4</mark> 981
NS-02	Inverter House MV2	91	1.5	524595	4995076
NS-03	Inverter House MV3	91	1.5	524627	4994781
NS-04	Inverter House MV4	91	1.5	524638	4994914
NS-05	Inverter House MV5	91	1.5	524652	4995066
NS-06	Inverter House MV6	91	1.5	524754	4995247
NS-07	Inverter House MV7	91	1.5	524896	4994772
NS-08	Inverter House MV8	91	1.5	524908	4994905
NS-09	Inverter House MV9	91	1.5	524921	4995057
NS-10	Inverter House MV10	91	1.5	524968	4994933
NS-11	Transformer 1 MVA (MV1)	69	1.5	524592	4994980
NS-12	Transformer 1 MVA (MV2)	69	1.5	524600	4995075
NS-13	Transformer 1 MVA (MV3)	69	1.5	524622	4994782
NS-14	Transformer 1 MVA (MV4)	69	1.5	524634	4994914
NS-15	Transformer 1 MVA (MV5)	69	1.5	524647	4995067
NS-16	Transformer 1 MVA (MV6)	69	1.5	524750	4995247
NS-17	Transformer 1 MVA (MV7)	69	1.5	524901	4994772
NS-18	Transformer 1 MVA (MV8)	69	1.5	524913	4994905
NS-19	Transformer 1 MVA (MV9)	69	1.5	524926	4995056
NS-20	Transformer 1 MVA (MV10)	69	1.5	524963	4994933
NS-21	Transformer 10 MVA	88	2	525013	4994843

F. Schedule C is deleted and replaced with the following Schedule C:

SCHEDULE C Facility Description

The Facility shall consist of the construction, installation, operation, use and retiring of the following:

- (a) Ten (10) ground mounted arrays of photovoltaic (PV) modules or panels with a total name plate capacity of up to 10 megawatts (AC) or 12 megawatts (DC), with each array consisting of approximately 4000-4500 PV modules and one (1) pad-mounted 1 Megavolt-ampere (MVA) three-phase, liquid filled transformer and two (2) 500 kilowatt inverters;
- (b) one (1) 10 MVA step up power transformer substation; and
- (c) associated ancillary equipment, systems and technologies including on-site access roads, switchgear, control and monitoring equipment, underground cabling and overhead distribution lines;

all in accordance with the Application.

All other Terms and Conditions remain the same.

This Notice shall constitute part of the approval issued under Approval No. 2189-8NQPZ5 dated December 19, 2011.

NOTICE REGARDING HEARINGS

In accordance with Section 139 of the <u>Environmental Protection Act</u>, within 15 days after the service of this notice, you may by further written notice served upon the Director, the Environmental Review Tribunal and the Environmental Commissioner, require a hearing by the Tribunal.

In accordance with Section 47 of the <u>Environmental Bill of Rights</u>, 1993, the Environmental Commissioner will place notice of your request for a hearing on the Environmental Registry.

Section 142 of the <u>Environmental Protection Act</u> provides that the notice requiring the hearing shall state:

- 1. The portions of the renewable energy approval or each term or condition in the renewable energy approval in respect of which the hearing is required, and;
- 2. The grounds on which you intend to rely at the hearing in relation to <u>each</u> portion appealed.

The signed and dated notice requiring the hearing should also include:

- 3. The name of the appellant;
- 4. The address of the appellant;
- 5. The renewable energy approval number;
- 6. The date of the renewable energy approval;
- 7. The name of the Director;
- 8. The municipality or municipalities within which the project is to be engaged in;

This notice must be served upon:

The Secretary* Environmental Review Tribunal 655 Bay Street, 15th Floor Toronto, Ontario M5G 1E5 The Environmental Commissioner 1075 Bay Street, 6th Floor Suite 605 Toronto, Ontario M5S 2B1 The Director Section 47.5, *Environmental Protection Act* Ministry of the Environment 2 St. Clair Avenue West, Floor 12A Toronto, Ontario M4V 1L5

* Further information on the Environmental Review Tribunal's requirements for an appeal can be obtained directly from the Tribunal at: Tel: (416) 314-4600, Fax: (416) 314-4506 or www.ert.gov.on.ca

AND

Under Section 142.1 of the <u>Environmental Protection Act</u>, residents of Ontario may require a hearing by the Environmental Review Tribunal within 15 days after the day on which notice of this decision is published in the Environmental Registry. By accessing the Environmental Registry at www.ebr.gov.on.ca, you can determine when this period ends.

Approval for the above noted renewable energy project is issued to you under Section 47.5 of the *Environmental Protection Act* subject to the terms and conditions outlined above.

DATED AT TORONTO this 15th day of November, 2013

AND

Vic Schroter, P.Eng. Director Section 47.5, *Environmental Protection Act*

MK/

c: Area Manager, MOE Cornwall

c: District Manager, MOE Ottawa

Glen Tomkinson, South Glengarry General Partner 1 Inc. and South Glengarry General Partner 2 Inc. operating as South Glengarry Solar Farm Partnership

Cornwall Solar Inc. - Cornwall Solar Project Noise Assessment Study Report - H362352

Appendix E As-built Pictures

Cornwall Solar Inc. - Cornwall Solar Project Noise Assessment Study Report - H362352

ΗΔΤCΗ

Cornwall Solar Inc. - Cornwall Solar Project Noise Assessment Study Report - H362352

Cornwall Solar Inc. - Cornwall Solar Project Noise Assessment Study Report - H362352

Appendix F CadnaA Sample Calculation

Receiver

Name: 45_R037

ID: 45_R037

X: 524321.71 m Y: 4994307.28 m

Z: 4.50 m

2. 4.00 m

				Poir	nt Sou	rce, IS	SO 961	3, Nar	ne: "CW	Sub	", ID:	"CW	Sub"							
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
7960	524396.80	4994374.40	3.50	0	DEN	A	86.6	0.0	0.0	0.0	0.0	51.1	0.4	-0.4	0.0	0.0	0.0	0.0	0.0	35.6
				Point	Sourc	e, ISC	<u>)</u> 9613,	Name	e: "CW_	Inv01	", ID:	"CW_	Inv01							
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
7963	524308.30	4994443.90	2.30	0	DEN	A	83.8	0.0	0.0	0.0	0.0	53.8	2.1	1.2	0.0	0.0	0.0	0.0	0.0	26.8
				D - ! 4	<u></u>	100	0040	News				1014	1							
Nir	×	V	7	Point	Sourc) 9613,	Name	e: "Cvv_	INVIO	", ID:			Aar	Afal	About	Abor	Cmat	ы	
INF.	<u> </u>	ř (m)	<u>(m)</u>	Rell.	DEN	rieq.		l/a	Opume				Aaum (dD)	Agi						
7067	(11)	(11)	(11)	0		(ПZ)	00 (A)							(UD)						24 O
1901	524100.40	4994371.20	2.30	0	DEIN	A	03.0	0.0	0.0	0.0	0.0	55.5	2.2	1.5	0.0	0.0	0.0	0.0	0.0	24.0
			F	Point	Source	e. ISO	9613.	Name	: "SG N	S 03	". ID:	"SG	NS 03							
Nr.	Х	Y		Refl	DEN	Frea	Lw	/a	Optime	K0	Di	Adiv	Aatm	Aar	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
7971	524627.00	4994781.00	1.50	0	DEN	Â	91.0	0.0	0.0	0.0	0.0	66.0	4.1	0.3	0.0	0.0	0.0	0.0	0.0	20.6
				Point	Sourc	e, ISC	9613,	Nam	e: "CW_	Inv09	", ID:	"CW	Inv09'							
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
7975	524115.20	4994452.10	2.30	0	DEN	A	83.8	0.0	0.0	0.0	0.0	59.0	2.4	1.3	0.0	0.0	0.0	0.0	0.0	21.1
						10.0														
	X	X	-	Point	Sourc	e, ISC) 9613,	Name	e: "CW_	Inv02	", ID:	"CW_	Inv02					0 1		
Nr.	X	Ý	<u> </u>	Refl.	DEN	Freq.	LW	l/a	Optime	K0	DI	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
7070	(m)	(m)	(m)	0	DEN	(HZ)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
7979	524236.50	4994550.70	2.30	0	DEIN	A	03.0	0.0	0.0	0.0	0.0	59.Z	2.4	1.3	0.0	0.0	0.0	0.0	0.0	21.0
			Po	int Sc	urce	150.9	613 N	ame [.] '	'CW Tra	ns01	י וח.	"CW	Trans	01"						
Nr	Х	Y	7	Refl	DFN	Frea	l w	l/a	Optime	K0	Di	Adiv	Aatm	Aar	Afol	Ahous	Abar	Cmet	RI	١r
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
7983	524313.10	4994443.70	2.00	0	DEN	Â	78.3	0.0	0.0	0.0	0.0	53.7	0.5	0.4	0.0	0.0	0.0	0.0	0.0	23.7
									1			1			1					
			F	Point	Source	e, ISO	9613,	Name	: "CW_F	an01	", ID:	"CW	Fan01	"	-					
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
7987	524310.74	4994445.50	2.00	0	DEN	A	78.2	0.0	0.0	0.0	0.0	53.8	0.6	1.1	0.0	0.0	0.0	0.0	0.0	22.7
										0.04										
	X	X	I		Source		9613,	Name	: "SG_N	S_04	", ID:	"SG_	NS_04					0 1		
Nr.	X	Ý	<u> </u>	Refl.	DEN	Freq.		l/a	Optime	KU (JD)			Aatm	Agr	Afol	Ahous	Abar	Cmet		
7000	(m)	(m)	(m)	0		(HZ)		aB	ab 0.0	(aB)	(aB)			(aB)			(aB)	(aB)	(aB)	40 C
7990	524638.00	4994914.00	1.50	0	DEN	A	91.0	0.0	0.0	0.0	0.0	67.7	4.5	0.3	0.0	0.0	0.0	0.0	0.0	18.5
			Po	int Sc	urce	150.9	613 N	ame [.] '	'CW Tra	ns10	" ID'	"CW	Trans	10"						
Nr.	Х	Y	Z	Refl	DEN	Frea	Lw	/a	Optime	K0	, . <u>.</u> .	Adiv	Aatm	Aar	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)		•	(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
7993	524171.20	4994371.00	2.00	0	DEN	A	78.3	0.0	0.0	0.0	0.0	55.3	0.6	0.5	0.0	0.0	0.0	0.0	0.0	22.0
			F	Point	Source	e, ISO	9613,	Name	: "CW_F	an10	", ID:	"CW	Fan10)"						
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
7996	524168.84	4994372.80	2.00	0	DEN	Α	78.2	0.0	0.0	0.0	0.0	55.4	0.7	1.2	0.0	0.0	0.0	0.0	0.0	20.9

			I	Point	Sourc	e, ISO	9613,	Name	: "SG N	S 07	", ID:	"SG	NS 07	"					-	
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	 K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
7999	524896.00	4994772.00	1.50	0	DEN	Á	91.Ó	0.0	0.0	0.0	0.0	68.4	4.7	0.4	0.0	0.0	0.0	0.0	0.0	17.6
				Point	Sourc	e, ISO	9613,	Name	: "SG_N	S_02	", ID:	"SG_	NS_02							
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
8002	524595.00	4995076.00	1.50	0	DEN	Α	91.0	0.0	0.0	0.0	0.0	69.2	4.9	0.4	0.0	0.0	0.0	0.0	0.0	16.5
				Point	Sourc	e, ISO	9613,	Name	: "SG_N	S_05	", ID:	"SG_	NS_05	;"						
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
8005	524652.00	4995066.00	1.50	0	DEN	A	91.0	0.0	0.0	0.0	0.0	69.4	4.9	0.4	0.0	0.0	0.0	0.0	0.0	16.3
				Delet	0	100	0040	News				1014/	1							
	N/		-	Point	Sourc		9613,	Name	e: "Cvv_l	nvu3	", ID:		INVU3					<u> </u>		
Nr.	X (112)	Ý	<u> </u>	Refl.	DEN	Freq.		l/a	Optime	KU			Aatm	Agr	Afol	Ahous	Abar	Cmet		
0007	(m)	(m)	(m)			(HZ)	aB(A)	dB 0.0	dB	(aB)	(aB)	(aB)	(aB)	(aB)	(aB)	(aB)	(aB)	(aB)	(aB)	aB(A)
8007	524183.80	4994642.40	2.30	0	DEN	A	83.8	0.0	0.0	0.0	0.0	62.2	2.6	1.1	0.0	0.0	0.0	0.0	0.0	17.9
				Doint	Souro	. 190	0612	Nomo	. "CC N		יחו יי	"00								
Nr	V	V	7	Point		E, 130	9013,		Optimo	3_00 K0	, וט. הם		Aotm	Aar	Afol	Abous	Abor	Cmot	DI	l r
INI.	(m)	(m)	(m)			(H-)		1/d dP	de					(YB)				(dB)		
8012	524008.00	(11)	(11)	0			01 0													16.2
0012	524900.00	4994903.00	1.50	0	DEN	~	91.0	0.0	0.0	0.0	0.0	09.5	4.9	0.4	0.0	0.0	0.0	0.0	0.0	10.2
				Point	Sourc	e ISC	9613	Name	- "CW	nv08	יחו "	"CW	Inv08'							
Nr	X	Y	7	Refl	DEN	Fred	1 w	l/a	Ontime	K0	, iD. Di	VibA	Aatm	Aar	Afol	Ahous	Ahar	Cmet	RI	l r
	(m)	(m)	(m)	1.011.	DEN	(Hz)		dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	
8015	524045 80	4994555 70	2 30	0	DEN	Δ	83.8	0.0				62 4	2.6	(uD) 1 1						17.7
0015	524045.00	4994000.10	2.50	0	DEN	~	05.0	0.0	0.0	0.0	0.0	02.4	2.0	1.1	0.0	0.0	0.0	0.0	0.0	17.7
				Point	Sourc	e. ISO	9613.	Name	: "SG N	S 10	". ID:	"SG	NS 10)''						
Nr	Х	Y	7	Refl	DFN	Frea	lw	l/a	Optime	K0	, . <u>.</u> .	Adiv	Aatm	Aar	Afol	Ahous	Abar	Cmet	RI	١r
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
8018	524968.00	4994933.00	1.50	0	DEN	() A	91.0	0.0	0.0	0.0	0.0	70.1	5.1	0.4	0.0	0.0	0.0	0.0	0.0	15.3
				-																
				Point	Sourc	e, ISO	9613,	Name	: "SG N	S 09	", ID:	"SG	NS 09)''						
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	 K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
8021	524921.00	4995057.00	1.50	0	DEN	A	91.0	0.0	0.0	0.0	0.0	70.6	5.3	0.5	0.0	0.0	0.0	0.0	0.0	14.6
				Point	Sourc	e, ISO	9613,	Name	: "SG_N	S_01	", ID:	"SG_	NS_01	"						
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
8024	524587.00	4994981.00	1.50	0	DEN	A	88.0	0.0	0.0	0.0	0.0	68.2	4.6	0.4	0.0	0.0	0.0	0.0	0.0	14.8
				Point	Sourc	e, ISO	9613,	Name	: "SG_N	S_06	", ID:	"SG_	NS_06	;"						
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
8027	524754.00	4995247.00	1.50	0	DEN	A	91.0	0.0	0.0	0.0	0.0	71.3	5.5	0.5	0.0	0.0	0.0	0.0	0.0	13.7
						1000	040 1					1014	T	0.011						
· · · ·			Pc	oint So	ource,	1509	613, Na	ame: "	CVV_Tra	Ins09	", ID:	CW_	Irans	09"				<u> </u>		
Nr.	X	Y	Z	Refl.	DEN	⊢req.	LW	1/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)	-		(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
8030	524120.10	4994451.90	2.00	0	DEN	A	78.3	0.0	0.0	0.0	0.0	58.9	0.8	0.4	0.0	0.0	0.0	0.0	0.0	18.2
					.	. 100	0040	Narr				1014/	F == 00							
Nin	V	N I			Sourc	5, 150	9013,	ivame	Ontine	anu9	, ID:		ranus	۰ ۱	Λf-!	About	A h = r	Cmat	יח	1 -
INF.	X (111)	Ý (ma)	<u> </u>	Retti.	DEN	rreq.		1/a	Optime				Aatm	Agr			ADar	Umet		
0000	(m)	(m)	(m)			(HZ)	aB(A)	dB	aR	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(aR)	aB(A)
8033	524117.68	4994453.70	2.00	0	DEN	A	78.2	0.0	0.0	0.0	0.0	59.0	1.0	1.2	0.0	0.0	0.0	0.0	0.0	17.0
			De	int C-	uroo	180.0	612 1		C\A/ Tro	00	יחו יי	"C\A/	Trance	02"						
Nir	v	V	7	Roft		Eroc			Ontime	150Z	, שו. יח	000_	Δotm	02 Aar	Afol	About	Abor	Cmat	PI I	
INI.	(m)	(m)	(m)	nen.		(H-)		dP						(dB)				(dB)		
8036	(III) 504040-00	(11)	2.00	<u>^</u>		(112)	UD(A)					(uD)		(uD)						10 A
0030	JZ4Z4J.JU	+334000.00	∠.00	U		А	10.3	0.0	0.0	0.0	0.0	ງລ.ເ	0.0	0.4	0.0	0.0	0.0	0.0	0.0	10.0

				Point	Sourc	e, ISO	9613,	Name	: "CW_F	an02'	", ID:	"CW_	Fan02	-						
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
8039	524240.93	4994552.30	2.00	0	DEN	A	78.2	0.0	0.0	0.0	0.0	59.2	1.0	1.2	0.0	0.0	0.0	0.0	0.0	16.8
				Point	Sourc	e, ISC	9613,	Name	e: "CW_	nv04'	", ID:	"CW_	Inv04'							
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
8042	524110.90	4994763.30	2.30	0	DEN	A	83.8	0.0	0.0	0.0	0.0	65.0	2.8	1.1	0.0	0.0	0.0	0.0	0.0	14.8
				Point	Sour	e, ISC	9613,	Name	e: "CW_	nv07'	", ID:	"CW_	Inv07'							
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
8045	523976.80	4994673.00	2.30	0	DEN	A	83.8	0.0	0.0	0.0	0.0	65.0	2.8	1.1	0.0	0.0	0.0	0.0	0.0	14.8
				Point	Sourc	e, ISO	9613,	Name	: "SG_N	S_21'	", ID:	"SG_	NS_21	"				-		
Nr.	X	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
8048	525013.00	4994843.00	2.00	0	DEN	A	88.0	0.0	0.0	0.0	0.0	69.8	2.3	0.2	0.0	0.0	0.0	0.0	0.0	15.6
					~		0010						1 00							
				Point	Sourc	e, ISC	9613,	, Name	e: "CW_	nv06'	", ID:	"CW_	Inv06							
Nr.	X	Ý	Z	Refl.	DEN	⊢req.	LW	I/a	Optime	K0	Di	Adiv	Aatm	Agr	Atol	Ahous	Abar	Cmet	KL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
8051	523909.20	4994779.90	2.30	0	DEN	A	83.8	0.0	0.0	0.0	0.0	66.9	3.0	1.1	0.0	0.0	0.0	0.0	0.0	12.7
				Delinet	0		0040	N				1014/	1							
Nu	Y	N I	7	Point	Sourc		9613,	, Name	e: CVV_	nvu5	, ID:		INV05	A	A.C. 1	A I	A I	0		1
INF.	X	Ý	<u> </u>	Refi.	DEN	Freq.		i/a	Optime	KU (JD)			Aatm	Agr	ATO	Anous	Abar	Cmet	KL (JD)	
0054	(m)	(m)	(m)	0	DEN	(HZ)	aB(A)	aB	aB	(aB)	(aB)	(aB)	(aB)	(aB)	(aB)	(aB)	(aB)	(aB)	(aB)	aB(A)
8054	524042.00	4994873.00	2.30	0	DEN	A	83.8	0.0	0.0	0.0	0.0	67.0	3.0	1.1	0.0	0.0	0.0	0.0	0.0	12.6
			D	vint Cr			612 N		CN/ Tro	no02'	יחו יי	"C\M	Tropo	02"						
Nir	V	V	7			509			Ontime		, ID.		Actm	03 1 ar	Afal	About	Abor	Cmat	ы	1
INF.	 (m)	r (m)	<u>(m)</u>	Rell.	DEN	rieq.		1/2	opume				Aaum (dD)	Agi (dD)						
9057	(11)	(11)	(111)	0			UD(A)					(UD)								14 0
0057	524100.70	4994042.20	2.00	0	DEN	A	10.3	0.0	0.0	0.0	0.0	02.1	1.1	0.2	0.0	0.0	0.0	0.0	0.0	14.0
				Point	Source	<u>- ISO</u>	9613	Name	· "CW F	an03'	יחו "	"CW	Fan03							
Nr	X	Y	7	Refl		Fred	Lw	l/a	Ontime	K0	Di	VibA	Aatm	Aar	Afol	Ahous	Ahar	Cmet	RI	l r
	(m)	(m)	(m)	1.011.	DEN	(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	
8060	524186 25	4994644 00	2 00	0	DEN	(11 <u>2</u>)	78.2	0.0	0.0	0.0	0.0	62.2	1.3	12			0.0		0.0	13.5
0000	024100.20	4004044.00	2.00	0	DEN		10.2	0.0	0.0	0.0	0.0	02.2	1.0	1.2	0.0	0.0	0.0	0.0	0.0	10.0
			Po	oint So	ource.	ISO 9	613. Na	ame: '	'CW Tra	ns08'	". ID:	"CW	Trans	08"						
Nr.	Х	Y	Z	Refl.	DEN	Frea.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Aar	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
8063	524050.60	4994555.50	2.00	0	DEN	Â	78.3	0.0	0.0	0.0	0.0	62.3	1.1	0.2	0.0	0.0	0.0	0.0	0.0	14.6
		II							1											
				Point	Sourc	e, ISO	9613,	Name	: "CW_F	an08'	", ID:	"CW_	Fan08	8"						
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
8066	524048.20	4994557.30	2.00	0	DEN	A	78.2	0.0	0.0	0.0	0.0	62.4	1.4	1.2	0.0	0.0	0.0	0.0	0.0	13.3
			Po	pint So	ource,	ISO 9	613, Na	ame: '	CW_Tra	ns07'	", ID:	"CW_	Trans	07"						
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
		((m)			(Hz)	$dB(\Delta)$	dD	aD		(dB)	(dB)	(dB)	(dB)	(dB)	(dB)		(dB)	(dB)	dB(A)
8069	(m)	(m)	(111)			(112)	uD(A)	UD	uь	(aB)	(uD)	(GD)			()		(ub)	(ub)	\ /	
	(m) 523981.60	(m) 4994672.80	2.00	0	DEN	(112) A	78.3	0.0	ав 0.0	(dB) 0.0	0.0	(dB) 65.0	1.4	0.2	0.0	0.0	(ub) 0.0	0.0	0.0	11.7
	(m) 523981.60	(m) 4994672.80	2.00	0	DEN	(112) A	78.3	0.0	<u>ив</u> 0.0	(dB) 0.0	0.0	(dD) 65.0	1.4	0.2	0.0	0.0	(UB) 0.0	(dB) 0.0	0.0	11.7
	(m) 523981.60	(m) 4994672.80	2.00 Pc	0 pint Sc	DEN ource,	A ISO 9	613, Na	0.0 ame: '	0.0 CW_Tra	(dB) 0.0 ins04'	0.0 ", ID:	(dD) 65.0 "CW_	1.4 Trans	0.2 04"	0.0	0.0	(dB) 0.0	(dB) 0.0	0.0	11.7
Nr.	(m) 523981.60 X	(m) 4994672.80 Y	(III) 2.00 Pc Z	0 oint So Refl.	DEN ource, DEN	ISO 9 Freq.	613, Na	0.0 ame: '	0.0 CW_Tra Optime	(dB) 0.0 ins04' K0	(dD) 0.0 ", ID: Di	(dD) 65.0 "CW_ Adiv	Trans Aatm	0.2 04" Agr	0.0	Ahous	0.0 Abar	0.0 Cmet	0.0 RL	11.7 Lr
Nr.	(m) 523981.60 X (m)	(m) 4994672.80 Y (m)	(iii) 2.00 Pc Z (m)	0 oint So Refl.	DEN ource, DEN	ISO 9 Freq. (Hz)	613, Na Lw dB(A)	0.0 ame: ' l/a dB	0.0 CW_Tra Optime dB	(dB) 0.0 ins04' K0 (dB)	(dB) 0.0 ", ID: Di (dB)	(dB) 65.0 "CW_ Adiv (dB)	Trans Aatm (dB)	0.2 04" Agr (dB)	Afol (dB)	Ahous (dB)	(dB) 0.0 Abar (dB)	Cmet (dB)	0.0 RL (dB)	11.7 Lr dB(A)
Nr. 8072	(m) 523981.60 X (m) 524115.80	(m) 4994672.80 Y (m) 4994763.10	(iii) 2.00 Po Z (m) 2.00	0 oint So Refl. 0	DEN ource, DEN DEN	ISO 9 Freq. (Hz) A	613, Na 613, Na Lw dB(A) 78.3	0.0 ame: ' l/a dB 0.0	CW_Tra Optime dB 0.0	(dB) 0.0 ins04' K0 (dB) 0.0	(dD) 0.0 ', ID: Di (dB) 0.0	(dD) 65.0 "CW_ Adiv (dB) 65.0	Trans Aatm (dB)	0.2 04" Agr (dB) 0.2	Afol (dB) 0.0	(dD) 0.0 Ahous (dB) 0.0	(dB) 0.0 Abar (dB) 0.0	(dB) 0.0 Cmet (dB) 0.0	0.0 RL (dB) 0.0	<u>Lr</u> <u>dB(A)</u> 11.7
Nr. 8072	(m) 523981.60 X (m) 524115.80	(m) 4994672.80 Y (m) 4994763.10	(iii) 2.00 Pc Z (m) 2.00	0 Dint Sc Refl. 0	DEN purce, DEN DEN	ISO 9 Freq. (Hz) A	613, Na 613, Na Lw dB(A) 78.3	0.0 ame: ' l/a dB 0.0	CW_Tra Optime dB 0.0	(dB) 0.0 ns04' K0 (dB) 0.0	(dD) 0.0 ", ID: Di (dB) 0.0	(dD) 65.0 "CW_ Adiv (dB) 65.0	Trans Aatm (dB) 1.4	0.2 04" (dB) 0.2	Afol (dB) 0.0	(dB) (dB) 0.0	(dB) 0.0 Abar (dB) 0.0	(dB) 0.0 Cmet (dB) 0.0	RL (dB) 0.0	<u>Lr</u> dB(A) 11.7
Nr. 8072	(m) 523981.60 X (m) 524115.80	(m) 4994672.80 Y (m) 4994763.10	(iii) 2.00 Pc Z (m) 2.00	0 pint Sc Refl. 0 Point 3	DEN DURCE, DEN DEN Source	ISO 9 Freq. (Hz) A	dB(A) 78.3 613, Na Lw dB(A) 78.3 9613,	0.0 ame: ' 1/a dB 0.0 Name	CW_Tra Optime dB 0.0	(dB) 0.0 ns04' K0 (dB) 0.0 an07'	(dD) 0.0 ", ID: Di (dB) 0.0 ", ID:	(dB) 65.0 Adiv (dB) 65.0	Trans Aatm (dB) 1.4 Fan07	0.2 04" (dB) 0.2	Afol (dB) 0.0	(dB) (dB) 0.0	(dB) 0.0 Abar (dB) 0.0	(dB) 0.0 Cmet (dB) 0.0	RL (dB) 0.0	<u>Lr</u> <u>dB(A)</u> 11.7
Nr. 8072 Nr.	(m) 523981.60 X (m) 524115.80 X	(m) 4994672.80 Y (m) 4994763.10 Y	(iii) 2.00 Pc Z (m) 2.00 Z	0 pint Sc Refl. 0 Point 3 Refl.	DEN DEN DEN Source	ISO 9 Freq. (Hz) A e, ISO Freq.	613, Na 613, Na Lw dB(A) 78.3 9613, Lw	ame: ' /a dB 0.0 Name /a	CW_Tra Optime dB 0.0 : "CW_F Optime	(dB) 0.0 ns04' K0 (dB) 0.0 an07' K0	(dD) 0.0 ", ID: Di (dB) 0.0 ", ID: Di	(dB) 65.0 Adiv (dB) 65.0 "CW_ Adiv	Trans Aatm (dB) 1.4 Fan07 Aatm	(dD) 0.2 04" (dB) 0.2 "" Agr	Afol (dB) 0.0	Ahous (dB) 0.0	Abar (dB) 0.0 (dB) 0.0	(dB) 0.0 (dB) 0.0	RL (dB) 0.0 RL	11.7 Lr dB(A) 11.7
Nr. 8072 Nr.	(m) 523981.60 X (m) 524115.80 X (m)	(m) 4994672.80 Y (m) 4994763.10 Y (m)	(m) 2.00 Pc Z (m) 2.00 Z (m)	0 Dint Sc Refl. 0 Point 3 Refl.	DEN DEN DEN Source	ISO 9 Freq. (Hz) A e, ISO Freq. (Hz)	613, Na 613, Na dB(A) 78.3 9613, Lw dB(A)	0.0 ame: ' I/a dB 0.0 Name I/a dB	CW_Tra Optime dB 0.0 : "CW_F Optime dB	(dB) 0.0 (ns04' K0 (dB) 0.0 an07' K0 (dB)	(dD) 0.0 ", ID: (dB) 0.0 ", ID: Di (dB)	(dB) 65.0 Adiv (dB) 65.0 "CW_ Adiv (dB)	Trans Aatm (dB) 1.4 Fan07 Aatm (dB)	(dB) 0.2 04" (dB) 0.2 " " Agr (dB)	Afol (dB) 0.0 Afol (dB)	Ahous (dB) 0.0 Ahous (dB)	(dB) 0.0 (dB) 0.0 Abar (dB)	(dB) 0.0 (dB) 0.0 Cmet (dB)	RL (dB) 0.0 RL (dB)	11.7 Lr dB(A) 11.7 Lr dB(A)

			I	Point S	Source	e, ISO	9613,	Name	: "CW_F	an04'	", ID:	"CW_	_Fan04	l"						
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
8078	524113.39	4994764.90	2.00	0	DEN	A	78.2	0.0	0.0	0.0	0.0	65.0	1.7	1.2	0.0	0.0	0.0	0.0	0.0	10.3
			Po	pint Sc	urce,	ISO 9	613, N	ame: "	CW_Tra	ns06	", ID:	"CW_	Trans	06"						
Nr.	<u> </u>	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
8080	523914.00	4994779.70	2.00	0	DEN	A	78.3	0.0	0.0	0.0	0.0	66.9	1.7	0.2	0.0	0.0	0.0	0.0	0.0	9.5
			De	int Ca			612 N			DO DE	- חו	"C\A/	Trana	05"						
Nir	×	V	7	Dof		150 9 Erog		ame.	Ontimo	INSU5	, וט. הו			05 Aar	Afol	About	Abor	Creat	Ы	l r
INI.		(m)	(m)	Rell.	DEN	/U-)		dP												
0001	(III) 524046 90	(111)	(11)	0		(ПZ)	UD(A)													
0004	524040.00	4994072.00	2.00	0	DEN	~	70.5	0.0	0.0	0.0	0.0	07.0	1.7	0.2	0.0	0.0	0.0	0.0	0.0	5.4
			ł	Point S	Source	a ISO	9613	Name	· "CW F	an06'	" ID'	"CW	Fan06	5"						
Nr.	х	Y	Z	Refl.	DEN	Frea.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Aar	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
8087	523911.62	4994781.50	2.00	0	DEN	Â	78.2	0.0	0.0	0.0	0.0	66.9	2.0	1.3	0.0	0.0	0.0	0.0	0.0	8.0
			ł	Point S	Source	e, ISO	9613,	Name	: "CW_F	an05'	", ID:	"CW_	_Fan05	5"						
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
8090	524044.40	4994874.60	2.00	0	DEN	A	78.2	0.0	0.0	0.0	0.0	67.0	2.0	1.3	0.0	0.0	0.0	0.0	0.0	7.9
				Poi	nt Sou	urce, I	SO 961	13, Na	me: "GL	_Inv7	", ID:	"GL_	Inv7"					a		
Nr.	X (112)	Ý	<u> </u>	Refl.	DEN	Freq.		I/a	Optime	KU (JD)			Aatm	Agr	Afol	Ahous	Abar	Cmet	RL (JD)	
0000	(m)	(m)	(m)		DEN	(HZ)	aB(A)	aB	dB	(aB)	(aB)	(aB)	(aB)	(aB)	(aB)	(dB)	(aB)	(aB)	(aB)	aB(A)
8093	522498.00	4993829.00	2.60	0	DEN	A	86.3	0.0	0.0	0.0	0.0	76.5	3.1	0.2	0.0	0.0	0.0	0.0	0.0	5.9
				Poi	nt Sol	irco la	SO 061	13 Na	me: "Cl	Inv5	יחו יי	"CI	lnv5"							
Nr	x	V	7	Refl		Fred		10, Na	Ontime	_IIIV3	, iD. Di	Adiv	Δatm	Δar	Afol	Ahous	∆har	Cmet	RI	lr
111.	(m)	(m)	(m)	itten.	DLIN	(Hz)		dB	dB	(dB)		(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	
8096	522390.00	4994010.00	2 60	0	DEN	Δ	86.3	0.0	0.0			76.8	3.8							55
0000	022000.00	4004010.00	2.00	Ŭ	DEN		00.0	0.0	0.0	0.0	0.0	10.0	0.0	0.2	0.0	0.0	0.0	0.0	0.0	0.0
				Poi	nt Soi	urce, I	SO 961	13, Na	me: "GL	Inv4	", ID:	"GL	Inv4"							
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	 K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
8099	522281.00	4994199.00	2.60	0	DEN	A	86.3	0.0	0.0	0.0	0.0	77.2	4.0	0.2	0.0	0.0	0.0	0.0	0.0	5.0
				Poi	nt Sou	urce, I	SO 961	13, Na	me: "GL_	_Inv6	", ID:	"GL_	Inv6"							
Nr.	<u> </u>	Ý	<u>Z</u>	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
0.4.0.0	(m)	(m)	(m)		DEN	(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
8102	522209.00	4994010.00	2.60	0	DEN	A	86.3	0.0	0.0	0.0	0.0	//.6	4.1	0.2	0.0	0.0	0.0	0.0	0.0	4.4
				Poi	nt Sou	irco la	SO 061	13 Na	me: "Cl	Inv/2	יחו יי	"CI	Inv2"							
Nr	X	Y	7	Refl		Fred		10, Na	Ontime	K0	, iD. Di	Adiv	Aatm	Aar	Afol	Ahous	Ahar	Cmet	RI	lr
	(m)	(m)	(m)	r ton.	DEN	(Hz)		dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	
8105	522162.00	4994354 00	2 60	0	DFN	(11 <u>2</u>)	86.3	0.0	0.0	0.0	0.0	77 7	4 1	0.2			0.0		0.0	43
0.00	00						00.0	0.0	0.0	0.0	0.0			0.2	0.0	0.0	0.0	0.0		
				Poi	nt Sou	urce, I	SO 961	13, Na	me: "GL	Inv3	", ID:	"GL	Inv3"							
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	 K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
8126	522100.00	4994199.00	2.60	0	DEN	Á	86.3	0.0	0.0	0.0	0.0	77.9	4.2	0.2	0.0	0.0	0.0	0.0	0.0	3.9
				Poi	nt So	urce, I	SO 96′	13, Na	me: "GL	Sub	", ID:	"GL_	Sub"							
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
8129	522294.00	4993696.00	3.50	0	DEN	A	85.8	0.0	0.0	0.0	0.0	77.5	4.6	-0.6	0.0	0.0	0.0	0.0	0.0	4.3
						-	00.00													
			_	Poi	nt Sou	urce, I	SO 961	13, Na	me: "GL	_Inv1	", ID:	"GL_	Inv1"					A	D : 1	
Nr.	X (ma)	Y	<u> </u>	Refl.	DEN	⊢req.		I/a	Optime	K0		Adiv	Aatm	Agr	Atol	Anous	Abar	Cmet		
0404	(m)	(m)	(m)		DC1/	(HZ)	aR(A)	aB	aB	(aB)	(aB)	(aR)	(aR)	(aB)	(aB)	(aB)	(aB)	(aB)	(aR)	dB(A)
8131	521955.00	4994431.00	2.60	0	DEN	A	06.3	0.0	0.0	0.0	0.0	18.5	4.4	0.3	0.0	0.0	0.0	0.0	0.0	3.1

			l	Point Sc	urce. ISC	9613	Name	: "SG N	S 13	". ID	"SG	NS 13	;"						
Nr.	Х	Y	Z	Refl D	EN Frea	Lw	/a	Optime	K0	Di	Adiv	Aatm	Aar	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)		(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
8134	524622.00	4994782.00	1 50	0 0	FN A	69.0	0.0	0.0	0.0	0.0	66.0	16	12	0.0		0.0	0.0	0.0	0.2
0.01	01.011.00			02		0010	0.0	0.0	0.0	0.0	00.0			0.0	0.0	0.0	0.0	0.0	0.2
				Point Sc	urce, ISC	9613,	Name	: "SG N	S 14	", ID:	"SG	NS 14	."						
Nr.	Х	Y	Z	Refl. D	EN Freq.	Lw	l/a	Optime	 K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)		(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
8137	524634.00	4994914.00	1.50	0 D	EN Á	69.0	0.0	0.0	0.0	0.0	67.7	1.8	1.3	0.0	0.0	0.0	0.0	0.0	-1.8
				Point Sc	urce, ISC	9613,	Name	: "SG_N	S_11'	", ID:	"SG	NS_11	"						
Nr.	Х	Y	Z	Refl. D	EN Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)		(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
8140	524592.00	4994980.00	1.50	0 D	EN Á	69.0	0.0	0.0	0.0	0.0	68.2	1.9	1.3	0.0	0.0	0.0	0.0	0.0	-2.5
		I		II										1					
				Point Sc	urce, ISC	9613,	Name	: "SG_N	S_17'	", ID:	"SG_	NS_17	""						
Nr.	Х	Y	Z	Refl. D	EN Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)		(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
8143	524901.00	4994772.00	1.50	0 D	EN A	69.0	0.0	0.0	0.0	0.0	68.4	2.0	1.3	0.0	0.0	0.0	0.0	0.0	-2.7
				Point Sc	urce, ISC	9613,	Name	: "SG_N	S_12	", ID:	"SG_	NS_12							
Nr.	Х	Y	Z	Refl. D	EN Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)		(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
8146	524600.00	4995075.00	1.50	0 D	EN A	69.0	0.0	0.0	0.0	0.0	69.2	2.1	1.3	0.0	0.0	0.0	0.0	0.0	-3.7
							•												
				Point Sc	urce, ISC	9613,	Name	: "SG_N	S_15	", ID:	"SG_	NS_15	;"						
Nr.	Х	Y	Z	Refl. D	EN Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)		(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
8149	524647.00	4995067.00	1.50	0 D	EN A	69.0	0.0	0.0	0.0	0.0	69.3	2.2	1.3	0.0	0.0	0.0	0.0	0.0	-3.9
				Point Sc	urce, ISC	9613,	Name	: "SG_N	S_18	", ID:	"SG_	NS_18	;" 						
Nr.	Х	Y	Z	Refl. D	EN Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)		(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
8152	524913.00	4994905.00	1.50	0 D	EN A	69.0	0.0	0.0	0.0	0.0	69.5	2.2	1.3	0.0	0.0	0.0	0.0	0.0	-4.1
				Point Sc	urce, ISC	9613,	Name	: "SG_N	S_20	", ID:	"SG_	NS_20)"						
Nr.	X	Y	Z	Refl. D	EN Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)		(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
8155	524963.00	4994933.00	1.50	0 D	EN A	69.0	0.0	0.0	0.0	0.0	70.0	2.3	1.4	0.0	0.0	0.0	0.0	0.0	-4.7
						0040	N1	101 T				F							
Nu	X	X	7			9613,	Name	GL_II	ans/	", ID:	GL_	rans/	A	A.C. 1	A 1	A I	0		1
Nr.	X (m)	Y (mr.)	<u> </u>	Refi. D	EN Freq.		l/a	Optime				Aatm	Agr			Abar	Cmet		
0450	(m)	(m)	(m)		(HZ)		aB	dB	(aB)	(aB)	(aB)	(aB)	(aB)	(aB)	(aB)	(aB)	(aB)	(aB)	aB(A)
8158	522493.00	4993829.00	2.58		EN A	75.1	0.0	0.0	0.0	0.0	76.5	4.2	-0.3	0.0	0.0	0.0	0.0	0.0	-5.4
				Doint So		0612	Namo	. "SC N	S 10	יחו יי	"SC								
Nr	X	V	7		EN From			Ontime	NU 0	, ישי. וח		Δatm	Δar	Δfol	Ahous	Abar	Cmet	RI	l r
111.	(m)	(m)	(m)	Tten. D	(Hz)		dB	dB	(dB)	(dB)		(dB)	(dB)		(dB)		(dB)		
8161	524926.00	4995056.00	1 50								70.7	(uD) 24	(uD) 1 4						-5.5
0101	524520.00	4993030.00	1.50			03.0	0.0	0.0	0.0	0.0	10.1	2.4	1.4	0.0	0.0	0.0	0.0	0.0	-0.0
				Point Sc	urce ISC	9613	Name	: "GI Tr	ans5	". ID [.]	"GI	Trans5							
Nr	X	Y	7		EN Fred	l w	/a	Optime	K0	, . <u>.</u>	Adiv	Aatm	Aar	Afol	Ahous	Abar	Cmet	RI	lr
	(m)	(m)	(m)		(Hz)		dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	
8164	522384.00	4994010.00	2 58			75 1	0.0	0.0			76.8	(uD) 4 3	-0.2						-5.8
0104	322304.00	4334010.00	2.50			10.1	0.0	0.0	0.0	0.0	10.0	4.5	-0.2	0.0	0.0	0.0	0.0	0.0	-5.0
				Point Sc	urce ISC	9613	Name	: "GI Tr	ans4	חו."	"GI	Trans4							
Nr	Х	Y	Z	Refl D	EN Fred	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Aar	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)		(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dR)	(dR)	(dR)	(dR)	(dR)	(dB)	(dR)	(dB)	dB(A)
8167	522276 00	4994199.00	2 58		FN 4	75 1		0.0			77 2	44	-0.2			0.0	0.0	0.0	-6.4
0.07	522210.00	100-100.00	2.00			1 10.1	0.0	0.0	0.0	0.0			0.2	0.0	0.0	0.0	0.0	0.0	5.4
				Point Sc	urce. ISC	9613	Name	: "SG N	S 16	". ID	"SG	NS 16	;"						
Nr	X	Y	7		EN Fred	I w	/a	Optime		, . <u>.</u> .		Aatm	Aar	Afol	Ahous	Ahar	Cmet	RI	lr
	(m)	(m)	(m)		(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dR)	(dR)	(dR)	(dB)	(dR)	(dB)	(dB)	(dB)	dB(A)
8173	524750 00	4995247 00	1 50		FN ^	60 0					71 2	26	1 /			0.0	0.0	0.0	-6.3
0170	02-1100.00	1000271.00	1.50			1 00.0	0.0	0.0	0.0	0.0	1.0	2.0	1.4	0.0	0.0	0.0	0.0	0.0	-0.0

				Point	Sourc	e, ISO	9613,	Name	: "GL_T	rans6	", ID:	"GL_	Trans6							
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
8220	522203.00	4994010.00	2.58	0	DEN	A	75.1	0.0	0.0	0.0	0.0	77.6	4.6	-0.2	0.0	0.0	0.0	0.0	0.0	-6.9

				Point	Sourc	e, ISO	9613,	Name	: "GL_T	rans2	", ID:	"GL_	Trans2							
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
8222	522157.00	4994354.00	2.58	0	DEN	A	75.1	0.0	0.0	0.0	0.0	77.7	4.6	-0.2	0.0	0.0	0.0	0.0	0.0	-7.1

				Point \$	Sourc	e, ISO	9613,	Name	: "GL_Ti	ans3	", ID:	"GL_	Trans3							
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
8224	522095.00	4994199.00	2.58	0	DEN	Α	75.1	0.0	0.0	0.0	0.0	78.0	4.8	-0.2	0.0	0.0	0.0	0.0	0.0	-7.5

Point Source, ISO 9613, Name: "GL_Trans1", ID: "GL_Trans1"																				
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	dB(A)						
8226	521950.00	4994431.00	2.58	0	DEN	A	75.1	0.0	0.0	0.0	0.0	78.5	5.0	-0.1	0.0	0.0	0.0	0.0	0.0	-8.3

CORNWALL SOLAR PROJECT RENEWABLE ENERGY APPROVAL MODIFICATION REPORT

APPENDIX C

Notice of a Proposed Change to an Approved Renewable Energy Project

NOTICE OF A PROPOSED CHANGE TO AN APPROVED RENEWABLE ENERGY PROJECT

Cornwall Solar Project

OPA Reference Number: FIT-F3SJUUQ

Project Location: The Project is located on Part of Lots 5, 6 and 7, Concession 5 within the Township of South Glengarry, United Counties of Stormont, Dundas and Glengarry.

Dated at: The Township of South Glengarry, United Counties of Stormont, Dundas and Glengarry on this the 16 day of October 2020.

Cornwall Solar Inc. (a subsidiary of Liberty Power) was issued a Renewable Energy Approval on January 15, 2013 and an Amendment to the Renewable Energy Approval on December 17, 2014 in respect of the Cornwall Solar Project. Information with respect to the decision on this Project can be viewed on the Environmental Registry by searching the following EBR Registry Numbers: 011-6841 and 012-3158.

Cornwall Solar Inc. is proposing to make a change to the Project and the Project itself is subject to the provisions of the Environmental Protection Act (the Act) Part V.0.1 and Ontario Regulation (359/09) (the Regulation). This Notice must be distributed in accordance with Section 32.2 of the Regulation. This notice is being distributed to make the public aware of the proposed change to the Project.

Project Description and Proposed Change:

Pursuant to the Act and the Regulation, the Project in respect of which the Renewable Energy Approval was issued, is a Class 3 Solar facility.

An application has been made to the Ministry of the Environment and Converstation and Parks to change the Project and alter the terms and conditions of the existing Renewable Energy Approval. The proposed change consists of replacing the existing intermediate transformers with new intermediate transformers in the same locations. If approved with this change, the facility's total maximum name plate capacity of 10MW shall remain unchanged. The Project location, taking the proposed change into account, is shown in the map provided.

Documents for Public Inspection:

Cornwall Solar Inc. has developed a Modification Report which summarizes the minor amendment and any revisions to the supporting documents as required. A copy of the Modification Report is currently available for public inspection on the Project website: <u>http://www.cornwallsolarproject.com/home.html</u>

Copies of the final REA documents also remain available on the Project website.

Project Contacts and Information:

To learn more about the Project, or to communicate questions or comments, please contact:

Mitchell French Manager, Asset Strategy Liberty Power 354 Davis Rd, Suite 100 Oakville ON L6J 2X1 905-465-6137

Mitchell.French@algonquinpower.com

Laba Guebezai Senior Manager, Environment Liberty Algonquin Business Services 354 Davis Rd, Suite 100 Oakville ON L6J 2X1 905-465-6739 Laba.Guebezai@libertyutilities.com